Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home

Modified items

All recently modified items, latest first.
When It Rains, It Pours Global Warming and the Increase in Extreme Precipitation from 1948 to 2011
Global warming is happening now and its effects are being felt in the United States and around the world. Among the expected consequences of global warming is an increase in the heaviest rain and snow storms, fueled by increased evaporation and the ability of a warmer atmosphere to hold more moisture. An analysis of more than 80 million daily precipitation records from across the contiguous United States reveals that intense rainstorms and snowstorms have already become more frequent and more severe. Extreme downpours are now happening 30 percent more often nationwide than in 1948. In other words, large rain or snowstorms that happened once every 12 months, on average, in the middle of the 20th century now happen every nine months. Moreover, the largest annual storms now produce 10 percent more precipitation, on average.
Projections of Future Drought in the Continental United States and Mexico
Using the Palmer drought severity index, the ability of 19 state-of-the-art climate models to reproduce observed statistics of drought over North America is examined. It is found that correction of substantial biases in the models’ surface air temperature and precipitation fields is necessary. However, even after a bias correction, there are significant differences in the models’ ability to reproduce observations. Using metrics based on the ability to reproduce observed temporal and spatial patterns of drought, the relationship between model performance in simulating present-day drought characteristics and their differences in projections of future drought changes is investigated. It is found that all models project increases in future drought frequency and severity. However, using the metrics presented here to increase confidence in the multimodel projection is complicated by a correlation between models’ drought metric skill and climate sensitivity. The effect of this sampling error can be removed by changing how the projection is presented, from a projection based on a specific time interval to a projection based on a specified temperature change. This modified class of projections has reduced intermodel uncertainty and could be suitable for a wide range of climate change impacts projections.
Conservation VALUE OF ROADLESS AREAS FOR VULNERABLE FISH AND Wildlife Species in the Crown of the Continent Ecosystem, Montana
The Crown of the Continent Ecosystem is one of the most spectacular landscapes in the world and most ecologically intact ecosystem remaining in the contiguous United States. Straddling the Continental Divide in the heart of the Rocky Mountains, the Crown of the Continent Ecosystem extends for >250 miles from the fabled Blackfoot River valley in northwest Montana north to Elk Pass south of Banff and Kootenay National Parks in Canada. It reaches from the short-grass plains along the eastern slopes of the Rockies westward nearly 100 miles to the Flathead and Kootenai River valleys. The Crown sparkles with a variety of dramatic landscapes, clean sources of blue waters, and diversity of plants and animals.Over the past century, citizens and government leaders have worked hard to save the core of this splendid ecosystem in Montana by establishing world-class parks and wildernesses – coupled with conservation of critical wildlife habitat on state and private lands along the periphery. These include jewels such as Glacier National Park, the Bob Marshall-Scapegoat-Great Bear Wilderness, the first-ever Tribal Wilderness in the Mission Mountains, numerous State of Montana Wildlife Management Areas (WMAs), and vital private lands through land trusts such as The Nature Conservancy. Their combined efforts have protected 3.3 million acres and constitute a truly impressive commitment to conservation. It was a remarkable legacy and great gift …but, in the face of new challenges, it may not have been enough.
Safe Havens, Safe Passages for Vulnerable Fish and Wildlife
Some of the best-known and most-cherished mountains on Earth are set in the Canadian Rockies of British Columbia and Alberta. Indeed, the mention of Banff, Jasper, Kootenay or Yoho National Parks evokes images of snow-capped peaks, thundering falls and turquoise waters, numerous natural wonders and majestic wildlife. The adjoining Provincial Parks in British Columbia – Mount Robson, Mount Assiniboine, and Hamber – are just as spectacular, if not quite as renowned. Waterton Lakes National Park in Alberta and Glacier National Park in Montana – brought together in 1931 as an International Peace Park by the respective Rotary Clubs – exemplify international cooperation and wilderness and wildlife without borders. All 9 of these parks have been designated as World Heritage Sites in recognition of their outstanding natural importance to the common heritage of humanity.
Columbia Water Center White Paper America’s Water Risk: Water Stress and Climate Variability
The emerging awareness of the dependence of business on water has resulted in increasing awareness of the concept of “Water Risk” and the diverse ways in which water can pose threats to businesses in certain regions and sectors. Businesses seek to secure sustainable income. To do so, they need to maintain a competitive advantage and brand differentiation. They need secure and stable supply chains. Their exposure risks related to increasing scarcity of water can come in a variety of forms at various points in the supply chain. Given increasing water scarcity and the associated deterioration of the quantity and quality of water sources in many parts of the world, many “tools” have been developed to map water scarcity riskor water risk. Typically, these tools are based on estimates of the average water supply and demand in each unit of analysis.Often, they are associated with river basins, while business is associated with cities or counties. They provide a useful first look at the potential imbalance of supply and demand to businesses.
Spatial patterns and policy implications for residential water use
The front yard makes a powerful visual statement about the occupants of the residence. As visible statements, yards are likely to induce a behavioral response on the part of neighboring residents. As an example, residents may strive to keep their yard as green and lush as their neighbors. For Kelowna, British Columbia, a highly significant positive spatial lag for summer water use implies some degree of spatial emulation in water using behavior. Other variables such as lot size, building size, assessed value, presence of a pool, etc. impact on water use as expected. The presence of a spatial lag implies a spatial multiplier for water saving innovations. If local water managers and policy makers can influence the spatial pattern of water saving innovations, they may be able to increase the size of the multiplier effect. Similar spatial policies may also be applicable to other socially influenced behaviors that leave a spatial signature, such as protecting ecologically significant habitats in urban areas
Slowly Warming
A chart about global Warming
How Much More Rain Will Global Warming Bring?
Climate models and satellite observations both indicate that the total amount of water in the atmosphere will increase at a rate of 7% per kelvin of surface warming. However, the climate models predict that global precipitation will increase at a much slower rate of 1 to 3% per kelvin. A recent analysis of satellite observations does not support this prediction of a muted response of precipitation to global warming. Rather, the observations suggest that precipitation and total atmospheric water have increased at about the same rate over the past two decades. SCIENCE VOL 317 13 JULY 2007
Predicting satellite-derived patterns of large-scale disturbances in forests of the Pacific Northwest Region in response to recent climatic variation
Across the Pacific Northwest, the climate between 1950 and 1975 was exceptionally cool and wet compared with more recent conditions (1995–2005). We reasoned that the changes in climate could result in expanded outbreaks of insects, diseases, and fire. To test this premise, we first modeled monthly variation in photosynthesis and growth of the most widely distributed species, Douglas-fir (Pseudotsuga menziesii), using a process-based model (3-PG) for the two periods. To compare with remotely sensed variables, we converted modeled growth potential into maximum leaf area index (LAImax), which was predicted to range from 1 to 9 across the region. On most sites, varying soil moisture storage capacity (θcap) from 200 to 300 mm while holding soil fertility constant, made slight but insignificant difference in simulated LAImax patterns. Both values of θcap correlated well with LAI estimates acquired from NASA's MODIS satellites in June, 2005 (r2= 0.7). To evaluate where 15 coniferous tree species might be prone to wide-scale disturbance, we used climatically-driven decision-tree models, calibrated in the 1950–1975 period, to identify vulnerable areas in 1995–2005. We stratified predictions within 34 recognized ecoregions and compared these results with large-scale disturbances recorded on MODIS imagery acquired between 2005 and 2009. The correlation between the percent of species judged as vulnerable within each ecoregion and the percent of forested areas recorded as disturbed with a MODIS-derived Global Disturbance Index was linear and accounted for 65 to 73% of the observed variation, depending on whether or not disturbance by fire was excluded from the analysis. Based on climate projections through the rest of the rest of the 21st century, we expect continued high levels of disturbance in ecoregions located beyond the climatically buffering influence of the Pacific Ocean.
Ecological responses to recent climate change
There is now ample evidence of the ecological impacts of recent climate change, from polar terrestrial to tropical marine environments. The responses of both flora and fauna span an array of ecosystems and organizational hierarchies, from the species to the community levels. Despite continued uncertainty as to community and ecosystem trajectories under global change, our review exposes a coherent pattern of ecological change across systems. Although we are only at an early stage in the projected trends of global warming, ecological responses to recent climate change are already clearly visible.
A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa
Observations and simulations link anthropogenicgreenhouse and aerosol emissions with rapidly increasing Indian Ocean sea surface temperatures (SSTs). Over the past 60 years, the Indian Ocean warmed two to three times faster than the central tropical Pacific, extending the tropical warm pool to the west by *40 longitude ([4,000 km). This propensity toward rapid warming in the Indian Ocean has been the dominant mode of interannual variability among SSTs throughout the tropical Indian and Pacific Oceans (55E–140W) since at least 1948, explaining more variance than anomalies associated with the El Nin˜o-Southern Oscillation (ENSO). In the atmosphere, the primary mode of variability has been a corresponding trend toward greatly increased convection and precipitation over the tropical Indian Ocean. The temperature and rainfall increases in this region have produced a westward extension of the western, ascending branch of the atmospheric Walker circulation. Diabatic heating due to increased mid-tropospheric water vapor condensation elicits a westward atmospheric response that sends an easterly flow of dry air aloft toward eastern Africa. In recent decades (1980–2009), this response has suppressed convection over tropical eastern Africa, decreasing precipitation during the ‘long-rains’ season of March–June. This trend toward drought contrasts with projections of increased rainfall in eastern Africa and more ‘El Nin˜o-like’ conditions globally by the Intergovernmental Panel on Climate Change. Increased Indian Ocean SSTs appear likely to continue to strongly modulate the Warm Pool circulation, reducing precipitation in eastern Africa, regardless of whether the projected trend in ENSO is realized. These results have important food security implications, informing agricultural development, environmental conservation, and water resource planning.
Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change
Climate change has led to major changes in the phenology (the timing of seasonal activities, such as flowering) of some species but not others. The extent to which flowering-time response to temperature is shared among closely related species might have important consequences for community-wide patterns of species loss under rapid climate change. Henry David Thoreau initiated a dataset of the Concord, Massachusetts, flora that spans !150 years and provides information on changes in species abundance and flowering time. When these data are analyzed in a phylogenetic context, they indicate that change in abundance is strongly correlated with flowering-time response. Species that do not respond to temperature have decreased greatly in abundance, and include among others anemones and buttercups [Ranunculaceae pro parte (p.p.)], asters and campanulas (Asterales), bluets (Rubiaceae p.p.), bladderworts (Lentibulariaceae), dogwoods (Cornaceae), lilies (Liliales), mints (Lamiaceae p.p.), orchids (Orchidaceae), roses (Rosaceae p.p.), saxifrages (Saxifragales), and violets (Malpighiales). Because flowering-time response traits are shared among closely related species, our findings suggest that climate change has affected and will likely continue to shape the phylogenetically biased pattern of species loss in Thoreau’s woods PNAS ! November 4, 2008 ! vol. 105 ! no. 44 ! 17029–17033
Are we in the midst of the sixth mass extinction? A view from the world of amphibians
Many scientists argue that we are either entering or in the midst of the sixth great mass extinction. Intense human pressure, both direct and indirect, is having profound effects on natural environments. The amphibians—frogs, salamanders, and caecilians—may be the only major group currently at risk globally. A detailed worldwide assessment and subsequent updates show that onethird or more of the 6,300 species are threatened with extinction. This trend is likely to accelerate because most amphibians occur in the tropics and have small geographic ranges that make them susceptible to extinction. The increasing pressure from habitat destruction and climate change is likely to have major impacts on narrowly adapted and distributed species. We show that salamanders on tropical mountains are particularly at risk. A new and significant threat to amphibians is a virulent, emerging infectious disease, chytridiomycosis, which appears to be globally distributed, and its effects may be exacerbated by global warming. This disease, which is caused by a fungal pathogen and implicated in serious declines and extinctions of >200 species of amphibians, poses the greatest threat to biodiversity of any known disease. Our data for frogs in the Sierra Nevada of California show that the fungus is having a devastating impact on native species, already weakened by the effects of pollution and introduced predators. A general message from amphibians is that we may have little time to stave off a potential mass extinction. 11466–11473  PNAS  August 12, 2008  vol. 105  suppl. 1
Volcanic cause of catastrophe
From the timing, it looks as if an episode of marked oceanic oxygen deficiency during the Cretaceous was the result of undersea volcanism. Studies of such events are relevant to the warming world of today. NATURE|Vol 454|17 July 2008
Why Is Climate Sensitivity So Unpredictable?
Uncertainties in projections of future climate change have not lessened substantially in past decades. Both models and observations yield broad probability distributions for long-term increases in global mean temperature expected from the doubling of atmospheric carbon dioxide, with small but finite probabilities of very large increases. We show that the shape of these probability distributions is an inevitable and general consequence of the nature of the climate system, and we derive a simple analytic form for the shape that fits recent published distributions very well. We show that the breadth of the distribution and, in particular, the probability of large temperature increases are relatively insensitive to decreases in uncertainties associated with the underlying climate processes. VOL 318 26 OCTOBER 2007
Call Off the Quest
Over the past 30 years, the climate research community has made valiant efforts to answer the “climate sensitivity” question: What is the long-term equilibrium warming response to a doubling of atmospheric carbon dioxide? Earlier this year, the Intergovernmental Panel on Climate Change (1) concluded that this sensitivity is likely to be in the range of 2° to 4.5°C, with a 1-in-3 chance that it is outside that range. The lower bound of 2°C is slightly higher than the 1.6°C proposed in the 1970s (2). 26 OCTOBER 2007 VOL 318 SCIENCE
Scenario Planning: a Tool for Conservation in an Uncertain World
: Conservation decisions about how, when, and where to act are typically based on our expectations for the future. When the world is highly unpredictable and we are working from a limited range of expectations, however, our expectations will frequently be proved wrong. Scenario planning offers a framework for developing more resilient conservation policies when faced with uncontrollable, irreducible uncertainty. A scenario in this context is an account of a plausible future. Scenario planning consists of using a few contrasting scenarios to explore the uncertainty surrounding the future consequences of a decision. Ideally, scenarios should be constructed by a diverse group of people for a single, stated purpose. Scenario planning can incorporate a variety of quantitative and qualitative information in the decision-making process. Often, consideration of this diverse information in a systemic way leads to better decisions. Furthermore, the participation of a diverse group of people in a systemic process of collecting, discussing, and analyzing scenarios builds shared understanding. The robustness provided by the consideration of multiple possible futures has served several groups well; we present examples from business, government, and conservation planning that illustrate the value of scenario planning. For conservation, major benefits of using scenario planning are (1) increased understanding of key uncertainties, (2) incorporation of alternative perspectives into conservation planning, and (3) greater resilience of decisions to surprise.
Unburnable Carbon – Are the world’s financial markets carrying a carbon bubble?
The Carbon Tracker initiative is a new way of looking at the carbon emissions problem. It is focused on the fossil fuel reserves held by publically listed companies and the way they are valued and assessed by markets. Currently financial markets have an unlimited capacity to treat fossil fuel reserves as assets. As governments move to control carbon emissions, this market failure is creating systemic risks for institutional investors, notably the threat of fossil fuel assets becoming stranded as the shift to a low-carbon economy accelerates.
U.S. Forest Carbon and Climate Change Controversies and Win-Win Policy Approaches
As consensus grows about the serious impacts of global climate change, the role of forests in carbon storage is increasingly recognized. Terrestrial vegetation worldwide currently removes about 24 percent of the greenhouse gases released by industrial processes. Unfortunately, this contribution is approximately cancelled out by carbon released as a result of global deforestation and other ecosystem changes. Slowing or halting the rate of deforestation is thus one of the prime strategies to mitigate global climate change. The U.S. situation differs from the global one in several ways. Since both forest acres and average biomass per forest acre are currently increasing, as U.S. forests recover from past clearing or heavy harvest, our forest carbon stores are growing larger over time. However, our high rate of industrial emissions means that only about 10 percent of the carbon released from burning fossil fuels in the United States is captured by our forests. Moreover, net U.S. forest carbon sequestration has begun to slow in recent years as reforestation reaches its limits and development sprawls into more rural forested areas. U.S. forests could possibly capture a much higher portion of our industrial emissions, but only if we prevent forest conversion and development and manage our forests to maximize carbon stores.
TRY – a global database of plant traits
Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: so far 93 trait databases have been contributed. The data repository currently contains almost three million trait entries for 69 000 out of the world’s 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data analysis shows that most plant traits are approximately log-normally distributed, with widely differing ranges of variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation models, capture a substantial fraction of the observed variation – but for several traits most variation occurs within PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global database is expected to support a paradigm shift from species to trait-based ecology, offer new opportunities for synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial vegetation in Earth system models.