-
Challenges of ecological restoration: Lessons from forests in northern Europe
-
The alarming rate of ecosystem degradation has raised the need for ecological restoration throughout different biomes and continents. North European forests may appear as one of the least vulnerable ecosystems from a global perspective, since forest cover is not rapidly decreasing and many ecosystem services remain at high level. However, extensive areas of northern forests are heavily exploited and have lost a major part of their biodiversity value. There is a strong requirement to restore these areas towards a more natural condition in order to meet the targets of the Convention on Biological Diversity. Several northern countries are now taking up this challenge by restoring forest biodiversity with increasing intensity. The ecology and biodiversity of boreal forests are relatively well understood making them a good model for restoration activities in many other forest ecosystems. Here we introduce northern forests as an ecosystem, discuss the historical and recent human impact and provide a brief status report on the ecological restoration projects and research already conducted there. Based on this discussion, we argue that before any restoration actions commence, the ecology of the target ecosystem should be established with the need for restoration carefully assessed and the outcome properly monitored. Finally, we identify the most important challenges that need to be solved in order to carry out efficient restoration with powerful and long-term positive impacts on biodiversity: coping with unpredictability, maintaining connectivity in time and space, assessment of functionality, management of conflicting interests and social restrictions and ensuring adequate funding.
Located in
Resources
/
Climate Science Documents
-
Chance, Stephanie
-
Located in
Expertise Search
-
Chang, Tai-ming
-
Located in
Expertise Search
-
Changes in Avian and Plant Communities of Aspen Woodlands over 12 Years after Livestock Removal in the Northwestern Great Basin
-
Riparian and quaking aspen (Populus tremuloides) woodlands are centers of avian abundance and diversity in the western United States, but they have been affected adversely by land use practices, particularly livestock grazing. In 1990, cattle were removed from a 112,500-ha national wildlife refuge in southeastern Oregon. Thereafter, we monitored changes in vegetation and bird abundance in years 1–3 (phase 1) and 10–12 (phase 2) in 17 riparian and 9 snow-pocket aspen plots. On each 1.5-ha plot, we sampled vegetation in 6 transects. Three times during each breeding season, observers recorded all birds 50 m to each side of the plot’s 150-m centerline for 25 minutes. We analyzed data with multivariate analysis of variance and paired t tests with p values adjusted for multiple comparisons. In both periods, riparian and snow-pocket aspen produced extensive regeneration of new shoots ( x ̄ = 2646 stems/ha and 7079 stems/ha, respectively). By phase 2, a 64% increase in medium-diameter trees in riparian stands indicated successful recruitment into the overstory, but this pattern was not seen in snow-pocket stands, where the density of trees was over 2 times greater. By phase 2 in riparian and snow-pocket stands, native forb cover had increased by 68% and 57%, respectively, mesic shrub cover had increased by 29% and 58%, and sagebrush cover had decreased by 24% and 31%. Total avian abundance increased by 33% and 39% in riparian and snow-pocket aspen, respectively, ground or understory nesters increased by 133% and 67% and overstory nesters increased by 34% and 33%. Similarly, ground or understory foragers increased by 25% and 32%, aerial foragers by 55% and 57%, and overstory foragers by 66% and 43%. We interpreted the substantial regeneration of aspen shoots, increased densities of riparian forbs and shrubs, and increased avian abundances as a multitrophic-level response to the total removal of livestock and as substantial movement toward recovery of biological integrity.
Located in
Resources
/
Climate Science Documents
-
Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends
-
The significant worldwide increase in observed river runoff has been tentatively attributed to the stomatal ‘‘antitranspirant’’ response of plants to rising atmospheric CO2 [Gedney N, Cox PM, Betts RA, Boucher O, Huntingford C, Stott PA (2006) Nature 439: 835– 838]. However, CO2 also is a plant fertilizer. When allowing for the increase in foliage area that results from increasing atmospheric CO2 levels in a global vegetation model, we find a decrease in global runoff from 1901 to 1999. This finding highlights the importance of vegetation structure feedback on the water balance of the land surface. Therefore, the elevated atmospheric CO2 concentration does not explain the estimated increase in global runoff over the last century. In contrast, we find that changes in mean climate, as well as its variability, do contribute to the global runoff increase. Using historic land-use data, we show that land-use change plays an additional important role in controlling regional runoff values, particularly in the tropics. Land-use change has been strongest in tropical regions, and its contribution is substantially larger than that of climate change. On average, land-use change has increased global runoff by 0.08 mm/year2 and accounts for 50% of the reconstructed global runoff trend over the last century. Therefore, we emphasize the importance of land-cover change in forecasting future freshwater availability and climate.
Located in
Resources
/
Climate Science Documents
-
Changes in Climatic Water Balance Drive Downhill Shifts in Plant Species’ Optimum Elevations
-
Uphill shifts of species’ distributions in response to historical warming are well documented, which leads
to widespread expectations of continued uphill shifts under future warming. Conversely, downhill shifts
are often considered anomalous and unrelated to climate change. By comparing the altitudinal
distributions of 64 plant species between the 1930s and the present day within California, we show that
climate changes have resulted in a significant downward shift in species’ optimum elevations. This
downhill shift is counter to what would be expected given 20th-century warming but is readily
explained by species’ niche tracking of regional changes in climatic water balance rather than
temperature. Similar downhill shifts can be expected to occur where future climate change scenarios
project increases in water availability that outpace evaporative demand.
Located in
Resources
/
Climate Science Documents
-
Changes in forest productivity across Alaska consistent with biome shift
-
Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest productivity since 1982 across boreal Alaska by linking satellite estimates of primary productivity and a large tree-ring data set. Trends in both records show consistent growth increases at the boreal–tundra ecotones that contrast with drought-induced productivity declines throughout interior Alaska. These patterns support the hypothesized effects of an initiating biome shift. Ultimately, tree dispersal rates, habitat availability and the rate of future climate change, and how it changes disturbance regimes, are expected to determine where the boreal biome will undergo a gradual geographic range shift, and where a more rapid decline.
Located in
Resources
/
Climate Science Documents
-
Changes in the Asian monsoon climate during 1700 –1850 induced by preindustrial cultivation
-
Preindustrial changes in the Asian summer monsoon climate from the 1700s to the 1850s were estimated with an atmospheric general circulation model (AGCM) using historical global land cover/use change data reconstructed for the last 300 years. Extended cultivation resulted in a decrease in monsoon rainfall over the Indian subcontinent and southeastern China and an associated weakening of the Asian summer monsoon circulation. The precipitation decrease in India was marked and was consistent with the observational changes derived from examining the Himalayan ice cores for the concurrent period. Between the 1700s and the 1850s, the anthropogenic increases in greenhouse gases and aerosols were still minor; also, no long-term trends in natural climate variations, such as those caused by the ocean, solar activity, or volcanoes, were reported. Thus, we propose that the land cover/ use change was the major source of disturbances to the climate during that period. This report will set forward quantitative ex-amination of the actual impacts of land cover/use changes on Asian monsoons, relative to the impact of greenhouse gases and aerosols, viewed in the context of global warming on the interannual, decadal, and centennial time scales.
atmospheric water balance climate change historical land-cover change monsoon rainfall
Located in
Resources
/
Climate Science Documents
-
Changes in Wind Pattern Alter Albatross Distribution and Life-History Traits
-
Westerly winds in the Southern Ocean have increased in intensity and moved poleward. Using
long-term demographic and foraging records, we show that foraging range in wandering albatrosses
has shifted poleward in conjunction with these changes in wind pattern, while their rates of travel and
flight speeds have increased. Consequently, the duration of foraging trips has decreased, breeding
success has improved, and birds have increased in mass by more than 1 kilogram. These positive
consequences of climate change may be temporary if patterns of wind in the southern westerlies
follow predicted climate change scenarios. This study stresses the importance of foraging performance
as the key link between environmental changes and population processes.
Located in
Resources
/
Climate Science Documents
-
Changes in winter precipitation extremes for the western United States under a warmer climate as simulated by regional climate models
-
We find a consistent and statistically significant increase in the intensity of future extreme winter precipitation events over the western United States, as simulated by an ensemble of regional climate models (RCMs) driven by IPCC AR4 global climate models (GCMs). All eight simulations analyzed in this work consistently show an increase in the intensity of extreme winter precipitation with the multi-model mean projecting an area-averaged 12.6% increase in 20-year return period and 14.4% increase in 50-year return period daily precipitation. In contrast with extreme precipitation, the multi-model ensemble shows a decrease in mean winter precipitation of approximately 7.5% in the southwestern US, while the interior west shows less statistically robust increases.
Located in
Resources
/
Climate Science Documents