Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
80 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
File Solar energy development impacts on land cover change and protected areas
Decisions determining the use of land for energy are of exigent concern as land scarcity, the need for ecosystem services, and demands for energy generation have concomitantly increased globally. Utility-scale solar energy (USSE) [i.e., ≥1 megawatt (MW)] development requires large quantities of space and land; however, studies quantifying the effect of USSE on land cover change and protected areas are limited. We assessed siting impacts of >160 USSE installations by technology type [photovoltaic (PV) vs. concentrating solar power (CSP)], area (in square kilometers), and capacity (in MW) within the global solar hot spot of the state of California (United States). Additionally, we used the Carnegie Energy and Environmental Compatibility model, a multiple criteria model, to quantify each installation according to environmental and technical compatibility. Last, we evaluated installations according to their proximity to protected areas, including inventoried roadless areas, endangered and threatened species habitat, and federally protected areas. We found the plurality of USSE (6,995 MW) in California is sited in shrublands and scrublands, comprising 375 km2 of land cover change. Twenty-eight percent of USSE installations are located in croplands and pastures, comprising 155 km2 of change. Less than 15% of USSE installations are sited in “Compatible” areas. The majority of “Incompatible” USSE power plants are sited far from existing transmission infrastructure, and all USSE installations average at most 7 and 5 km from protected areas, for PV and CSP, respectively. Where energy, food, and conservation goals intersect, environmental compatibility can be achieved when resource opportunities, constraints, and trade-offs are integrated into siting decisions.
Located in Resources / Climate Science Documents
File text/texmacs Seeing the landscape for the trees: Metrics to guide riparian shade management in river catchments
Rising water temperature (Tw) due to anthropogenic climate change may have serious conse- quences for river ecosystems. Conservation and/or expansion of riparian shade could counter warming and buy time for ecosystems to adapt. However, sensitivity of river reaches to direct solar radiation is highly het- erogeneous in space and time, so benefits of shading are also expected to be site specific. We use a network of high-resolution temperature measurements from two upland rivers in the UK, in conjunction with topo- graphic shade modeling, to assess the relative significance of landscape and riparian shade to the thermal behavior of river reaches. Trees occupy 7% of the study catchments (comparable with the UK national aver- age) yet shade covers 52% of the area and is concentrated along river corridors. Riparian shade is most ben- eficial for managing Tw at distances 5–20 km downstream from the source of the rivers where discharge is modest, flow is dominated by near-surface hydrological pathways, there is a wide floodplain with little land- scape shade, and where cumulative solar exposure times are sufficient to affect Tw. For the rivers studied, we find that approximately 0.5 km of complete shade is necessary to off-set Tw by 18C during July (the month with peak Tw) at a headwater site; whereas 1.1 km of shade is required 25 km downstream. Further research is needed to assess the integrated effect of future changes in air temperature, sunshine duration, direct solar radiation, and downward diffuse radiation on Tw to help tree planting schemes achieve
Located in Resources / Climate Science Documents
File ECMAScript program Novel climates, no-analog communities, and ecological surprises
No-analog communities (communities that are compositionally unlike any found today) occurred frequently in the past and will develop in the greenhouse world of the future. The well documented no-analog plant communities of late-glacial North America are closely linked to “novel” climates also lacking modern analogs, characterized by high seasonality of temperature. In climate simulations for the Intergovernmental Panel on Climate Change A2 and B1 emission scenarios, novel climates arise by 2100 AD, primarily in tropical and subtropical regions. These future novel climates are warmer than any present climates globally, with spatially variable shifts in precipitation, and increase the risk of species reshuffling into future no-analog communities and other ecological surprises. Most ecological models are at least partially parameterized from modern observations and so may fail to accurately predict ecological responses to these novel climates. There is an urgent need to test the robustness of ecological models to climate conditions outside modern experience.
Located in Resources / Climate Science Documents
File PDF document Are conservation organizations configured for effective adaptation to global change?
Conservation organizations must adapt to respond to the ecological impacts of global change. Numerous changes to conservation actions (eg facilitated ecological transitions, managed relocations, or increased corridordevelopment) have been recommended, but some institutional restructuring within organizations may also be needed. Here we discuss the capacity of conservation organizations to adapt to changing environmental conditions, focusing primarily on public agencies and nonprofits active in land protection and management in the US. After first reviewing how these organizations anticipate and detect impacts affecting target species and ecosystems, we then discuss whether they are sufficiently flexible to prepare and respond by reallocating funding, staff, or other resources. We raise new hypotheses about how the configuration of different organizations enables them to protect particular conservation targets and manage for particular biophysical changes that require coordinated management actions over different spatial and temporal scales. Finally, we provide a discussion resource to help conservation organizations assess their capacity to adapt.
Located in Resources / Climate Science Documents
File Troff document South-Central Interior Small Stream and Riparian Habitat
This habitat was assessed in both the Cumberland - Southern Appalachian subregion and the Interior Low Plateau subregion. Results are in the first two tabs of the spreadsheet. A description of the habitat, and a list of associated species, is included in the description tab. The remaining tabs describe the individual factors and their definitions. These results are in the review stage. Please send comments to lesley_sneddon@natureserve.org.
Located in Research / / Phase II: Vulnerability Assessments / Habitat Vulnerability Assessments
File Troff document South-Central Interior Small Stream and Riparian Habitat
This habitat was assessed in both the Cumberland - Southern Appalachian subregion and the Interior Low Plateau subregion. Results are in the first two tabs of the spreadsheet. A description of the habitat, and a list of associated species, is included in the description tab. The remaining tabs describe the individual factors and their definitions. These results are in the review stage. Please send comments to lesley_sneddon@natureserve.org.
Located in Vulnerability / / Phase II: Vulnerability Assessments / Habitat Vulnerability Assessments
BIG DATA as an engine for aquatic information creation
The smartest thing, the only thing really, we can do to conserve & preserve fisheries and aquatic biodiversity as the climate warms this century is to invest our limited resources wisely.
Located in News & Events
Central Appalachian Climate Change Vulnerability Species Assessments
These results are a compilation of climate change vulnerability assessments in the northern-most portion of the LCC, covering the area from New York south to West Virginia and Virginia, west to Pennsylvania and eastern Ohio.
Located in Research / / Assessing Vulnerability of Species and Habitats to Large-scale Impacts / Vulnerability Assessment Foundational Data by Subregion
Central Appalachian Climate Change Vulnerability Species Assessments
These results are a compilation of climate change vulnerability assessments in the northern-most portion of the LCC, covering the area from New York south to West Virginia and Virginia, west to Pennsylvania and eastern Ohio.
Located in Vulnerability / Climate Change Vulnerability / Vulnerability Assessment Foundational Data by Subregion
Managing for Species Adaptive Capacity
A new paper authored by researchers at federal agencies, regional partnerships, and universities, including Appalachian LCC Coordinator and Senior Scientist Dr. Jean Brennan, proposes a new conceptual paradigm for adaptive capacity.
Located in News & Events