-
Delayed detection of climate mitigation benefits due to climate inertia and variability
-
Climate change mitigation acts by reducing greenhouse gas emissions, and thus curbing, or even reversing, the increase in their atmospheric concentration. This reduces the associated anthropogenic radiative forcing, and hence the size of the warming. Because of the inertia and internal variability affecting the climate system and the global carbon cycle, it is unlikely that a reduction in warming would be immediately discernible. Here we use 21st century simulations from the latest ensemble of Earth System Model experiments to investigate and quantify when mitigation becomes clearly discernible. We use one of the scenarios as a reference for a strong mitigation strategy, Representative Concentration Pathway (RCP) 2.6 and compare its outcome with either RCP4.5 or RCP8.5, both of which are less severe mitigation pathways. We analyze global mean atmospheric CO2, and changes in annually and seasonally averaged surface temperature at global and regional scales. For global mean surface temperature, the median detection time of mitigation is about 25–30 y after RCP2.6 emissions depart from the higher emission trajectories. This translates into detection of a mitigation signal by 2035 or 2045, depending on whether the comparison is with RCP8.5 or RCP4.5, respectively. The detection of climate benefits of emission mitigation occurs later at regional scales, with a median detection time between 30 and 45 y after emission paths separate. Requiring a 95% confidence level induces a delay of several decades, bringing detection time toward the end of the 21st century.
regional climate change | climate variability | signal detection
Located in
Resources
/
Climate Science Documents
-
The material footprint of nations
-
Metrics on resource productivity currently used by governments suggest that some developed countries have increased the use of natural resources at a slower rate than economic growth (relative decoupling) or have even managed to use fewer resources over time (absolute decoupling). Using the material footprint (MF), a consumption-based indicator of resource use, we find the contrary: Achievements in decoupling in advanced economies are smaller than reported or even nonexistent. We present a time series analysis of the MF of 186 countries and identify material flows associated with global production and consumption networks in unprecedented specificity. By calculating raw material equivalents of international trade, we demonstrate that countries’ use of nondomestic resources is, on average, about threefold larger than the physical quantity of traded goods. As wealth grows, countries tend to reduce their domestic portion of materials extraction through international trade, whereas the overall mass of material consumption generally increases. With every 10% increase in gross domestic product, the average national MF increases by 6%. Our findings call into question the sole use of current resource productivity indicators in policy making and suggest the necessity of an additional focus on consumption- based accounting for natural resource use.
raw material consumption | multiregion input–output analysis | sustainable resource management
Located in
Resources
/
Climate Science Documents
-
Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011
-
As the Earth’s third pole, the Tibetan Plateau has experienced a pronounced warming in the past decades. Recent studies reported that the start of the vegetation growing season (SOS) in the Plateau showed an advancing trend from 1982 to the late 1990s and a delay from the late 1990s to 2006. However, the findings regard- ing the SOS delay in the later period have been questioned, and the reasons causing the delay remain unknown. Here we explored the alpine vegetation SOS in the Plateau from 1982 to 2011 by integrating three long-term time-series datasets of Normalized Difference Vegetation Index (NDVI): Global Inventory Modeling and Mapping Studies (GIMMS, 1982–2006), SPOT VEGETATION (SPOT-VGT, 1998–2011), and Moderate Resolution Imaging Spec- troradiometer (MODIS, 2000–2011). We found GIMMS NDVI in 2001–2006 differed substantially from SPOT-VGT and MODIS NDVIs and may have severe data quality issues in most parts of the western Plateau. By merging GIMMS-based SOSs from 1982 to 2000 with SPOT-VGT–based SOSs from 2001 to 2011 we found the alpine vegetation SOS in the Plateau experienced a continuous advancing trend at a rate of ∼1.04 d·y−1 from 1982 to 2011, which was consistent with observed warming in springs and winters. The satellite-derived SOSs were proven to be reliable with observed phenology data at 18 sites from 2003 to 2011; however, comparison of their trends was inconclusive due to the limited temporal coverage of the observed data. Longer-term observed data are still needed to validate the phenology trend in the future.
Located in
Resources
/
Climate Science Documents
-
Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States
-
Livestock production impacts air and water quality, ocean health, and greenhouse gas (GHG) emissions on regional to global scales and it is the largest use of land globally. Quantifying the environ- mental impacts of the various livestock categories, mostly arising from feed production, is thus a grand challenge of sustainability science. Here, we quantify land, irrigation water, and reactive nitrogen (Nr) impacts due to feed production, and recast published full life cycle GHG emission estimates, for each of the major animal- based categories in the US diet. Our calculations reveal that the environmental costs per consumed calorie of dairy, poultry, pork, and eggs are mutually comparable (to within a factor of 2), but strikingly lower than the impacts of beef. Beef production requires 28, 11, 5, and 6 times more land, irrigation water, GHG, and Nr, respectively, than the average of the other livestock categories. Preliminary analysis of three staple plant foods shows two- to sixfold lower land, GHG, and Nr requirements than those of the nonbeef animal-derived calories, whereas irrigation requirements are comparable. Our analysis is based on the best data currently available, but follow-up studies are necessary to improve parameter estimates and fill remaining knowledge gaps. Data imperfections notwithstanding, the key conclusion—that beef production demands about 1 order of magnitude more resources than alternative livestock categories—is robust under existing uncertainties. The study thus elu- cidates the multiple environmental benefits of potential, easy-to- implement dietary changes, and highlights the uniquely high re- source demands of beef.
food impact | foodprint | geophysics of agriculture | multimetric analysis
Located in
Resources
/
Climate Science Documents
-
Global water resources affected by human interventions and climate change
-
Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multi- model approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future.
ISI-MIP | WaterMIP
Located in
Resources
/
Climate Science Documents
-
Satellite methods underestimate indirect climate forcing by aerosols
-
Satellite-based estimates of the aerosol indirect effect (AIE) are consistently smaller than the estimates from global aerosol models, and, partly as a result of these differences, the assessment of this climate forcing includes large uncertainties. Satellite estimates typically use the present-day (PD) relationship between observed cloud drop number concentrations (Nc) and aerosol optical depths (AODs) to determine the preindustrial (PI) values of Nc. These values are then used to determine the PD and PI cloud albedos and, thus, the effect of anthropogenic aerosols on top of the atmo- sphere radiative fluxes. Here, we use a model with realistic aerosol and cloud processes to show that empirical relationships for lnðNc Þ versus lnðAODÞ derived from PD results do not represent the atmo- spheric perturbation caused by the addition of anthropogenic aerosols to the preindustrial atmosphere. As a result, the model estimates based on satellite methods of the AIE are between a factor of 3 to more than a factor of 6 smaller than model estimates based on actual PD and PI values for Nc. Using lnðNcÞ versus lnðAIÞ (Aerosol Index, or the optical depth times angstrom exponent) to estimate preindustrial values for Nc provides estimates for Nc and forcing that are closer to the values predicted by the model. Never- theless, the AIE using lnðNcÞ versus lnðAIÞ may be substantially incorrect on a regional basis and may underestimate or overesti- mate the global average forcing by 25 to 35%.
Located in
Resources
/
Climate Science Documents
-
Assessing the impacts of livestock production on biodiversity in rangeland ecosystems
-
Biodiversity in rangelands is decreasing, due to intense utilization for livestock production and conversion of rangeland into cropland; yet the outlook of rangeland biodiversity has not been considered in view of future global demand for food. Here we assess the impact of future livestock production on the global rangelands area and their biodiversity. First we formalized exist- ing knowledge about livestock grazing impacts on biodiversity, expressed in mean species abundance (MSA) of the original rangeland native species assemblages, through metaanalysis of peer-reviewed literature. MSA values, ranging from 1 in natural rangelands to 0.3 in man-made grasslands, were entered in the IMAGE-GLOBIO model. This model was used to assess the impact of change in food demand and livestock production on future rangeland biodiversity. The model revealed remarkable regional variation in impact on rangeland area and MSA between two agricultural production scenarios. The area of used rangelands slightly increases globally between 2000 and 2050 in the baseline scenario and reduces under a scenario of enhanced uptake of resource-efficient production technologies increasing production [high levels of agricultural knowledge, science, and technology (high-AKST)], particularly in Africa. Both scenarios suggest a global decrease in MSA for rangelands until 2050. The contribution of livestock grazing to MSA loss is, however, expected to diminish after 2030, in particular in Africa under the high-AKST scenario. Policies fostering agricultural intensification can reduce the overall pressure on rangeland biodiversity, but additional measures, addressing factors such as climate change and infrastructural development, are necessary to totally halt biodiversity loss.
dose-response model | intactness | land use
Located in
Resources
/
Climate Science Documents
-
Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production
-
Over 13 million ha of former cropland are enrolled in the US Conservation Reserve Program (CRP), providing well-recognized biodiversity, water quality, and carbon (C) sequestration benefits that could be lost on conversion back to agricultural production. Here we provide measurements of the greenhouse gas consequences of converting CRP land to continuous corn, corn–soybean, or perennial grass for biofuel production. No-till soybeans preceded the annual crops and created an initial carbon debt of 10.6 Mg CO2 equivalents (CO2e)·ha−1 that included agronomic inputs, changes in C stocks, altered N2O and CH4 fluxes, and foregone C sequestration less a fossil fuel offset credit. Total debt, which includes future debt created by additional changes in soil C stocks and the loss of substantial future soil C sequestration, can be constrained to 68 Mg CO2e·ha−1 if subsequent crops are under permanent no-till management. If tilled, however, total debt triples to 222 Mg CO2e·ha−1 on account of further soil C loss. Projected C debt repayment periods under no-till management range from 29 to 40 y for corn– soybean and continuous corn, respectively. Under conventional tillage repayment periods are three times longer, from 89 to 123 y, respectively. Alternatively, the direct use of existing CRP grasslands for cellulosic feedstock production would avoid C debt entirely and provide modest climate change mitigation immediately. Incentives for permanent no till and especially permission to harvest CRP biomass for cellulosic biofuel would help to blunt the climate impact of future CRP conversion.
land-use change | renewable energy | carbon balance | agriculture | nitrous oxide
Located in
Resources
/
Climate Science Documents
-
Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought
-
Climate change is progressively increasing severe drought events in the Northern Hemisphere, causing regional tree die-off events and contributing to the global reduction of the carbon sink efficiency of forests. There is a critical lack of integrated community- wide assessments of drought-induced responses in forests at the macroecological scale, including defoliation, mortality, and food web responses. Here we report a generalized increase in crown defoliation in southern European forests occurring during 1987– 2007. Forest tree species have consistently and significantly altered their crown leaf structures, with increased percentages of defolia- tion in the drier parts of their distributions in response to increased water deficit. We assessed the demographic responses of trees associated with increased defoliation in southern European forests, specifically in the Iberian Peninsula region. We found that defolia- tion trends are paralleled by significant increases in tree mortality rates in drier areas that are related to tree density and temperature effects. Furthermore, we show that severe drought impacts are associated with sudden changes in insect and fungal defoliation dynamics, creating long-term disruptive effects of drought on food webs. Our results reveal a complex geographical mosaic of species- specific responses to climate change–driven drought pressures on the Iberian Peninsula, with an overwhelmingly predominant trend toward increased drought damage.
extreme events | earth system feedbacks | ecological networks | global change | Mediterranean biome
Located in
Resources
/
Climate Science Documents
-
Fluvial landscapes of the Harappan civilization
-
The collapse of the Bronze Age Harappan, one of the earliest urban civilizations, remains an enigma. Urbanism flourished in the western region of the Indo-Gangetic Plain for approximately 600 y, but since approximately 3,900 y ago, the total settled area and settlement sizes declined, many sites were abandoned, and a significant shift in site numbers and density towards the east is recorded. We report morphologic and chronologic evidence indicating that flu- vial landscapes in Harappan territory became remarkably stable during the late Holocene as aridification intensified in the region after approximately 5,000 BP. Upstream on the alluvial plain, the large Himalayan rivers in Punjab stopped incising, while down- stream, sedimentation slowed on the distinctive mega-fluvial ridge, which the Indus built in Sindh. This fluvial quiescence suggests a gradual decrease in flood intensity that probably stimulated intensive agriculture initially and encouraged urbanization around 4,500 BP. However, further decline in monsoon precipitation led to conditions adverse to both inundation- and rain-based farming. Contrary to earlier assumptions that a large glacier-fed Himalayan river, identi- fied by some with the mythical Sarasvati, watered the Harappan heartland on the interfluve between the Indus and Ganges basins, we show that only monsoonal-fed rivers were active there during the Holocene. As the monsoon weakened, monsoonal rivers gradu- ally dried or became seasonal, affecting habitability along their courses. Hydroclimatic stress increased the vulnerability of agricultural production supporting Harappan urbanism, leading to settlement downsizing, diversification of crops, and a drastic increase in settlements in the moister monsoon regions of the upper Punjab, Haryana, and Uttar Pradesh.
Indus Valley ∣ floods ∣ droughts ∣ climate change ∣ archaeology
Located in
Resources
/
Climate Science Documents