-
The potential for behavioral thermoregulation to buffer ‘‘cold-blooded’’ animals against climate warming
-
Increasing concern about the impacts of global warming on biodi- versity has stimulated extensive discussion, but methods to trans- late broad-scale shifts in climate into direct impacts on living animals remain simplistic. A key missing element from models of climatic change impacts on animals is the buffering influence of behavioral thermoregulation. Here, we show how behavioral and mass/energy balance models can be combined with spatial data on climate, topography, and vegetation to predict impacts of in- creased air temperature on thermoregulating ectotherms such as reptiles and insects (a large portion of global biodiversity). We show that for most ‘‘cold-blooded’’ terrestrial animals, the primary thermal challenge is not to attain high body temperatures (al- though this is important in temperate environments) but to stay cool (particularly in tropical and desert areas, where ectotherm biodiversity is greatest). The impact of climate warming on ther- moregulating ectotherms will depend critically on how changes in vegetation cover alter the availability of shade as well as the animals’ capacities to alter their seasonal timing of activity and reproduction. Warmer environments also may increase mainte- nance energy costs while simultaneously constraining activity time, putting pressure on mass and energy budgets. Energy- and mass-balance models provide a general method to integrate the complexity of these direct interactions between organisms and climate into spatial predictions of the impact of climate change on biodiversity. This methodology allows quantitative organism- and habitat-specific assessments of climate change impacts.
Australia biophysical model climate change terrestrial ectotherm GIS
Located in
Resources
/
Climate Science Documents
-
Climate, carbon cycling, and deep-ocean ecosystem
-
Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy 60% of the Earth’s surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, un- precedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep- sea ecosystems under modern conditions of rapidly changing climate.
Located in
Resources
/
Climate Science Documents
-
Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests
-
From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world’s highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n 44) than for sampled tropical (n 36) and boreal (n 52) forests (n is number of sites per forest biome). Spatially averaged Intergovern- mental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change re- garding forest conservation, management, and restoration. Conserv- ing forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest’s carbon sequestration potential also should be recognized.
Eucalyptus regnans climate mitigation primary forest deforestation and degradation temperate moist forest biome
Located in
Resources
/
Climate Science Documents
-
Multidimensional evaluation of managed relocation
-
Managed relocation (MR) has rapidly emerged as a potential intervention strategy in the toolbox of biodiversity management under climate change. Previous authors have suggested that MR (also referred to as assisted colonization, assisted migration, or assisted translocation) could be a last-alternative option after interrogating a linear decision tree. We argue that numerous interacting and value-laden considerations demand a more inclu- sive strategy for evaluating MR. The pace of modern climate change demands decision making with imperfect information, and tools that elucidate this uncertainty and integrate scientific information and social values are urgently needed. We present a heuristic tool that incorporates both ecological and social criteria in a multidimensional decision-making framework. For visualization purposes, we collapse these criteria into 4 classes that can be depicted in graphical 2-D space. This framework offers a pragmatic approach for summarizing key dimensions of MR: capturing un- certainty in the evaluation criteria, creating transparency in the evaluation process, and recognizing the inherent tradeoffs that different stakeholders bring to evaluation of MR and its alternatives.
assisted migration climate change conservation biology conservation strategy sustainability science
Located in
Resources
/
Climate Science Documents
-
Synchronous extinction of North America’s Pleistocene mammals
-
The late Pleistocene witnessed the extinction of 35 genera of North American mammals. The last appearance dates of 16 of these genera securely fall between 12,000 and 10,000 radiocarbon years ago (13,800–11,400 calendar years B.P.), although whether the absence of fossil occurrences for the remaining 19 genera from this time interval is the result of sampling error or temporally staggered extinctions is unclear. Analysis of the chronology of extinctions suggests that sampling error can explain the absence of terminal Pleistocene last appearance dates for the remaining 19 genera. The extinction chronology of North American Pleistocene mammals therefore can be characterized as a synchronous event that took place 12,000–10,000 radiocarbon years B.P. Results favor an ex- tinction mechanism that is capable of wiping out up to 35 genera across a continent in a geologic instant.
climate change extraterrestrial impact overkill Quaternary extinctions radiocarbon dates
Located in
Resources
/
Climate Science Documents
-
The physical basis for increases in precipitation extremes in simulations of 21st-century climate change
-
Global warming is expected to lead to a large increase in atmospheric water vapor content and to changes in the hydrological cycle, which include an intensification of precipitation extremes. The intensity of precipitation extremes is widely held to increase proportionately to the increase in atmospheric water vapor content. Here, we show that this is not the case in 21st-century climate change scenarios simulated with climate models. In the tropics, precipitation extremes are not simulated reliably and do not change consistently among climate models; in the extratropics, they consistently increase more slowly than atmospheric water vapor content. We give a physical basis for how precipitation extremes change with climate and show that their changes depend on changes in the moist-adiabatic temperature lapse rate, in the upward velocity, and in the temperature when precipitation ex- tremes occur. For the tropics, the theory suggests that improving the simulation of upward velocities in climate models is essential for improving predictions of precipitation extremes; for the extra- tropics, agreement with theory and the consistency among climate models increase confidence in the robustness of predictions of precipitation extremes under climate change.
global warming hydrological cycle rainfall extreme events
Located in
Resources
/
Climate Science Documents
-
Overcoming systemic roadblocks to sustainability: The evolutionary redesign of worldviews, institutions, and technologies
-
A high and sustainable quality of life is a central goal for humanity. Our current socio-ecological regime and its set of interconnected worldviews, institutions, and technologies all support the goal of unlimited growth of material production and consumption as a proxy for quality of life. However, abundant evidence shows that, beyond a certain threshold, further material growth no longer significantly contributes to improvement in quality of life. Not only does further material growth not meet humanity’s central goal, there is mounting evidence that it creates significant roadblocks to sustainability through increasing resource constraints (i.e., peak oil, water limitations) and sink constraints (i.e., climate disruption). Overcoming these roadblocks and creating a sustainable and de- sirable future will require an integrated, systems level redesign of our socio-ecological regime focused explicitly and directly on the goal of sustainable quality of life rather than the proxy of unlimited material growth. This transition, like all cultural transitions, will occur through an evolutionary process, but one that we, to a certain extent, can control and direct. We suggest an integrated set of worldviews, institutions, and technologies to stimulate and seed this evolutionary redesign of the current socio-ecological regime to achieve global sustainability.
cultural adaptation ecology societal decline
Located in
Resources
/
Climate Science Documents
-
Irreversible climate change due to carbon dioxide emissions
-
The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450 – 600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the ‘‘dust bowl’’ era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4–1.0 m if 21st century CO2 concentrations exceed 600 ppmv and 0.6 –1.9 m for peak CO2 concentrations exceeding 1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer.
dangerous interference precipitation sea level rise warming
Located in
Resources
/
Climate Science Documents
-
Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time
-
Stomatal pores are microscopic structures on the epidermis of leaves formed by 2 specialized guard cells that control the exchange of water vapor and CO2 between plants and the atmosphere. Stomatal size (S) and density (D) determine maximum leaf diffusive (stomatal) conductance of CO2 (gcmax) to sites of assimi- lation. Although large variations in D observed in the fossil record have been correlated with atmospheric CO2, the crucial significance of similarly large variations in S has been overlooked. Here, we use physical diffusion theory to explain why large changes in S nec- essarily accompanied the changes in D and atmospheric CO2 over the last 400 million years. In particular, we show that high densities of small stomata are the only way to attain the highest gcmax values required to counter CO2‘‘starvation’’ at low atmospheric CO2 concentrations. This explains cycles of increasing D and decreasing S evident in the fossil history of stomata under the CO2 impover- ished atmospheres of the Permo-Carboniferous and Cenozoic gla- ciations. The pattern was reversed under rising atmospheric CO2 regimes. Selection for small S was crucial for attaining high gcmax under falling atmospheric CO2 and, therefore, may represent a mechanism linking CO2 and the increasing gas-exchange capacity of land plants over geologic time.
Phanerozoic photosynthesis plant evolution transpiration xylem
Located in
Resources
/
Climate Science Documents
-
Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global change-type drought
-
Large-scale biogeographical shifts in vegetation are predicted in response to the altered precipitation and temperature regimes associated with global climate change. Vegetation shifts have profound ecological impacts and are an important climate-ecosystem feedback through their alteration of carbon, water, and energy exchanges of the land surface. Of particular concern is the potential for warmer temperatures to compound the effects of increasingly severe droughts by triggering widespread vegetation shifts via woody plant mortality. The sensitivity of tree mortality to temperature is dependent on which of 2 non-mutually-exclusive mechanisms predominates—temperature-sensitive carbon starvation in response to a period of protracted water stress or temperature-insensitive sudden hydraulic failure under extreme water stress (cavitation). Here we show that experimentally induced warmer temperatures (4 °C) shortened the time to drought- induced mortality in Pinus edulis (pin ̃ on shortened pine) trees by nearly a third, with temperature-dependent differences in cumu- lative respiration costs implicating carbon starvation as the primary mechanism of mortality. Extrapolating this temperature effect to the historic frequency of water deficit in the southwestern United States predicts a 5-fold increase in the frequency of regional-scale tree die-off events for this species due to temperature alone. Projected increases in drought frequency due to changes in pre- cipitation and increases in stress from biotic agents (e.g., bark beetles) would further exacerbate mortality. Our results demon- strate the mechanism by which warmer temperatures have exac- erbated recent regional die-off events and background mortality rates. Because of pervasive projected increases in temperature, our results portend widespread increases in the extent and frequency of vegetation die-off.
biosphere–atmosphere feedbacks drought impacts global-change ecology Pinus edulis carbon starvation
Located in
Resources
/
Climate Science Documents