Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
84 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Evolutionary history and the effect of biodiversity on plant productivity
Loss of biological diversity because of extinction is one of the most pronounced changes to the global environment. For several decades, researchers have tried to understand how changes in biodiversity might impact biomass production by examining how biomass correlates with a number of biodiversity metrics (especially the number of species and functional groups). This body of research has focused on species with the implicit assumption that they are independent entities. However, functional and ecological similarities are shaped by patterns of common ancestry, such that distantly related species might contribute more to production than close relatives, perhaps by increasing niche breadth. Here, we analyze 2 decades of experiments performed in grassland ecosystems throughout the world and examine whether the evolutionary relationships among the species comprising a community predict how biodiversity impacts plant biomass production. We show that the amount of phylogenetic diversity within communities explained significantly more variation in plant community biomass than other measures of diversity, such as the number of species or functional groups. Our results reveal how evolutionary history can provide critical information for understanding, predicting, and potentially ameliorating the effects of biodiversity loss and should serve as an impetus for new biodiversity experiments.
Located in Resources / Climate Science Documents
File PDF document Climate, carbon cycling, and deep-ocean ecosystem
Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy 60% of the Earth’s surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, un- precedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep- sea ecosystems under modern conditions of rapidly changing climate.
Located in Resources / Climate Science Documents
File A globally coherent fingerprint of climate change impacts across natural systems
Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a ‘systematic trend’. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates ‘very high confidence’ (as laid down by the IPCC) that climate change is already affecting living systems.
Located in Resources / Climate Science Documents
File PDF document Ecological and Evolutionary Responses to Recent Climate Change
Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups. These observed changes are heavily biased in the directions predicted from global warming and have been linked to local or regional climate change through correlations between climate and biological variation, field and laboratory experiments, and physiological research. Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change. Tropical coral reefs and amphibians have been most negatively affected. Predator-prey and plant-insect interactions have been disrupted when interacting species have responded differently to warming. Evolutionary adaptations to warmer conditions have occurred in the interiors of species’ ranges, and resource use and dispersal have evolved rapidly at expanding range margins. Observed genetic shifts modulate local effects of climate change, but there is little evidence that they will mitigate negative effects at the species level.
Located in Resources / Climate Science Documents
File PDF document An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot
Extreme climatic events, such as heat waves, are predicted to increase in frequency and magnitude as a consequence of global warming but their ecological effects are poorly understood, particularly in marine ecosystems1–3. In early 2011, the marine ecosystems along the west coast of Australia -- a global hotspot of biodiversity and endemism 4,5 -- experienced the highest-magnitude warming event on record. Sea temperatures soared to unprecedented levels and warming anomalies of 2–4 ◦ C persisted for more than ten weeks along >2,000 km of coastline. We show that biodiversity patterns of temperate seaweeds, sessile invertebrates and demersal fish were significantly different after the warming event, which led to a reduction in the abundance of habitat-forming seaweeds and a subsequent shift in community structure towards a depauperate state and a tropicalization of fish communities. We conclude that extreme climatic events are key drivers of biodiversity patterns and that the frequency and intensity of such episodes have major implications for predictive models of species distribution and ecosystem structure, which are largely based on gradual warming trends.
Located in Resources / Climate Science Documents
File PDF document Comment: Time to Model all Life on Earth
To help transform our understanding of the biosphere, ecologists — like climate scientists — should simulate whole ecosystems, argue Drew Purves and colleagues. FROM THE TEXT: General circulation models, which simulatethe physics and chemistry of Earth’s land, ocean and atmosphere, embody scientists’ best understanding of how the climate system works and are crucial to making predictions and shaping policies. We think that analogous general ecosystem models (GEMs) could radically improve understanding of the biosphere and inform policy decisions about biodiversity and conservation.
Located in Resources / Climate Science Documents
File PDF document Biodiversity loss and its impact on humanity
The most unique feature of Earth is the existence of life, and the most extraordinary feature of life is its diversity. Approximately 9 million types of plants, animals, protists and fungi inhabit the Earth. So, too, do 7 billion people. Two decades ago, at the first Earth Summit, the vast majority of the world’s nations declared that human actions were dismantling the Earth’s ecosystems, eliminating genes, species and biological traits at an alarming rate. This observation led to the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper.
Located in Resources / Climate Science Documents
File PDF document A global synthesis reveals biodiversity loss as a major driver of ecosystem change
Evidence is mounting that extinctions are altering key processes important to the productivity and sustainability of Earth’s ecosystems (1–4). Further species loss will accelerate change in ecosystem processes (5–8), but it is unclear how these effects compare to the direct effects of other forms of environmental change that are both driving diversity loss and altering ecosystem function. Here we use a suite of meta-analyses of published data to show that the effects of species loss on productivity and decomposition—two processes important in all ecosystems—are of comparable magnitude to the effects of many other global environmental changes. In experiments, intermediate levels of species loss (21–40%) reduced plant production by 5–10%, comparable to previously documented effects of ultraviolet radiation and climate warming. Higher levels of extinction (41–60%) had effects rivalling those of ozone, acidification, elevated CO2 and nutrient pollution. At intermediate levels, species loss generally had equal or greater effects on decomposition than did elevated CO2 and nitrogen addition. The identity of species lost also had a large effect on changes in productivity and decomposition, generating a wide range of plausible outcomes for extinction. Despite the need for more studies on interactive effects of diversity loss and environmental changes, our analyses clearly show that the ecosystem consequences of local species loss are as quantitatively significant as the direct effects of several global change stressors that have mobilized major international concern and remediation efforts (9).
Located in Resources / Climate Science Documents
File PDF document Approaching a state shift in Earth’s biosphere
Localized ecological systems are known to shift abruptly and irreversibly from one state to another when they are forced across critical thresholds. Here we review evidence that the global ecosystem as a whole can react in the same way and is approaching a planetary-scale critical transition as a result of human influence. The plausibility of a planetary-scale ‘tipping point’ highlights the need to improve biological forecasting by detecting early warning signs of critical transitions on global as well as local scales, and by detecting feedbacks that promote such transitions. It is also necessary to address root causes of how humans are forcing biological changes.
Located in Resources / Climate Science Documents
File PDF document A safe operating space for humanity
Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan RockstrÖm and colleagues.
Located in Resources / Climate Science Documents