Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
657 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
A System for Assessing Vulnerability of Species (SAVS) to Climate Change
Sustained conservation of species requires integration of future climate change effects, but few tools exist to assist managers. The System for Assessing Vulnerability of Species (SAVS) identifies the relative vulnerability or resilience of vertebrate species to climate change.
Located in Resources / General Resources Holdings
File PDF document A System for Assessing Vulnerability of Species (SAVS) to Climate Change pdf
Sustained conservation of species requires integration of future climate change effects, but few tools exist to assist managers. The System for Assessing Vulnerability of Species (SAVS) identifies the relative vulnerability or resilience of vertebrate species to climate change.
Located in Resources / General Resources Holdings
File PDF document A systems approach to evaluating the air quality co-benefits of US carbon policies
Because human activities emit greenhouse gases (GHGs) and conventional air pollutants from common sources, policy designed to reduce GHGs can have co-benefits for air quality that may offset some or all of the near-term costs of GHG mitigation. We present a systems approach to quantify air quality co-benefits of US policies to reduce GHG (carbon) emissions. We assess health-related benefits from reduced ozone and particulate matter (PM2.5) by linking three advanced models, representing the full pathway from policy to pollutant damages. We also examine the sensitivity of co-benefits to key policy- relevant sources of uncertainty and variability. We find that monetized human health benefits associated with air quality improvements can offset 26–1,050% of the cost of US carbon policies. More flexible policies that minimize costs, such as cap-and-trade standards, have larger net co-benefits than policies that target specific sectors (electricity and transportation). Although air quality co-benefits can be comparable to policy costs for present-day air quality and near-term US carbon policies, potential co-benefits rapidly diminish as carbon policies become more stringent.
Located in Resources / Climate Science Documents
File PDF document A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa
Observations and simulations link anthropogenicgreenhouse and aerosol emissions with rapidly increasing Indian Ocean sea surface temperatures (SSTs). Over the past 60 years, the Indian Ocean warmed two to three times faster than the central tropical Pacific, extending the tropical warm pool to the west by *40 longitude ([4,000 km). This propensity toward rapid warming in the Indian Ocean has been the dominant mode of interannual variability among SSTs throughout the tropical Indian and Pacific Oceans (55E–140W) since at least 1948, explaining more variance than anomalies associated with the El Nin˜o-Southern Oscillation (ENSO). In the atmosphere, the primary mode of variability has been a corresponding trend toward greatly increased convection and precipitation over the tropical Indian Ocean. The temperature and rainfall increases in this region have produced a westward extension of the western, ascending branch of the atmospheric Walker circulation. Diabatic heating due to increased mid-tropospheric water vapor condensation elicits a westward atmospheric response that sends an easterly flow of dry air aloft toward eastern Africa. In recent decades (1980–2009), this response has suppressed convection over tropical eastern Africa, decreasing precipitation during the ‘long-rains’ season of March–June. This trend toward drought contrasts with projections of increased rainfall in eastern Africa and more ‘El Nin˜o-like’ conditions globally by the Intergovernmental Panel on Climate Change. Increased Indian Ocean SSTs appear likely to continue to strongly modulate the Warm Pool circulation, reducing precipitation in eastern Africa, regardless of whether the projected trend in ENSO is realized. These results have important food security implications, informing agricultural development, environmental conservation, and water resource planning.
Located in Resources / Climate Science Documents
File PDF document A-maize-ing Diversity
Analysis of a new maize resource reveals that a large number of genetic loci with small effects may underlie the wide variation seen in traits such as flowering time.
Located in Resources / Climate Science Documents
AAAS Kicks Off Initiative to Recognize Climate Change Risks
AAAS is announcing the launch of a new initiative to expand the dialogue on the risks of climate change.
Located in News & Events
File PDF document Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model
The continued increase in the atmospheric concentration of carbon dioxide due to anthropogenic emissions is predicted to lead to significant changes in climate1. About half of the current emissions are being absorbed by the ocean and by land ecosystems2, but this absorption is sensitive to climate3,4 as well as to atmospheric carbon dioxide concentrations5, creating a feedback loop. General circulation models have generally excluded the feedback between climate and the biosphere, using static vegetation distributions and CO2 concentrations from simple carbon-cycle models that do not include climate change6. Here we present results from a fully coupled, three-dimensional carbon±climate model, indicating that carbon-cycle feedbacks could signi®cantly accelerate climate change over the twenty-®rst century. We ®nd that under a `business as usual' scenario, the terrestrial biosphere acts as an overall carbon sink until about 2050, but turns into a source thereafter. By 2100, the ocean uptake rate of 5 Gt C yr-1 is balanced by the terrestrial carbon source, and atmospheric CO2 concentrations are 250 p.p.m.v. higher in our fully coupled simulation than in uncoupled carbon models2, resulting in a global-mean warming of 5.5 K, as compared to 4 K without the carbon-cycle feedback.
Located in Resources / Climate Science Documents
File PDF document Accounting for Environmental Assets
A country can cut down its forests, erode its soils, pollute its aquifers and hunt its wildlife and fisheries to extinction, but its measured income is not affected as these assets disappear. Impoverishment is taken for progress
Located in Resources / Climate Science Documents
File Accounting for groundwater in stream fish thermal habitat responses to climate change
Forecasting climate change effects on aquatic fauna and their habitat requires an understanding of how water temperature responds to changing air temperature (i.e., thermal sensitivity). Previous efforts to forecast climate effects on brook trout (Salvelinus fontinalis) habitat have generally assumed uniform air–water temperature relationships over large areas that cannot account for groundwater inputs and other processes that operate at finer spatial scales. We developed regression models that accounted for groundwater influences on thermal sensitivity from measured air–water temperature relationships within forested watersheds in eastern North America (Shenandoah National Park, Virginia, USA, 78 sites in nine watersheds). We used these reach-scale models to forecast climate change effects on stream temperature and brook trout thermal habitat, and compared our results to previous forecasts based upon large-scale models. Observed stream temperatures were generally less sensitive to air temperature than previously assumed, and we attribute this to the moderating effect of shallow groundwater inputs. Predicted groundwater temperatures from air–water regression models corresponded well to observed groundwater temperatures elsewhere in the study area. Predictions of brook trout future habitat loss derived from our fine-grained models were far less pessimistic than those from prior models developed at coarser spatial resolutions. However, our models also revealed spatial variation in thermal sensitivity within and among catchments resulting in a patchy distribution of thermally suitable habitat. Habitat fragmentation due to thermal barriers therefore may have an increasingly important role for trout population viability in headwater streams. Our results demonstrate that simple adjustments to air–water temperature regression models can provide a powerful and cost-effective approach
Located in Resources / Climate Science Documents
Acquiring Information on the Climate Vulnerability of Appalachian Species and Habitats
A new report out of the Climate Change Vulnerability Assessment research project addresses how the Cooperative should acquire information about the climate vulnerability of Appalachian species and habitats and share with its partners.
Located in News & Events