Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
657 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document A Measurable Planetary Boundary for the Biosphere
Terrestrial net primary (plant) production provides a measurable boundary for human consumption of Earth’s biological resources.
Located in Resources / Climate Science Documents
File PDF document A megacity in a changing climate: the case of Kolkata
Projections by the Intergovernmental Panel on Climate Change suggest that there will be an increase in the frequency and intensity of climate extremes in the 21st century. Kolkata, a megacity in India, has been singled out as one of the urban centers vulnerable to climate risks. Modest flooding during monsoons at high tide in the Hooghly River is a recurring hazard in Kolkata. More intense rainfall, riverine flooding, sea level rise, and coastal storm surges in a changing climate can lead to widespread and severe flooding and bring the city to a standstill for several days. Using rainfall data, high and low emissions scenarios, and sea level rise of 27 cm by 2050, this paper assesses the vulnerability of Kolkata to increasingly intense precipitation events for return periods of 30, 50, and 100 years. It makes location-specific inundation depth and duration projections using hydrological, hydraulic, and urban storm models with geographic overlays. High resolution spatial analysis provides a roadmap for designing adaptation schemes to minimize the impacts of climate change. The modeling results show that de-silting of the main sewers would reduce vulnerable population estimates by at least 5 %.
Located in Resources / Climate Science Documents
A National Experiment in Manager-Scientist Partnerships to Apply an Adaptation Framework
Forest managers across the U.S. are faced with implementing adaptation strategies in the face of severe droughts, wildfires, and other climate-related impacts.
Located in News & Events
File PDF document A new, global, multi-annual (2000–2007) burnt area product at 1 km resolution Vol. 35
This paper reports on the development and validation of a new, global, burnt area product. Burnt areas are reported at a resolution of 1 km for seven fire years (2000 to 2007). A modified version of a Global Burnt Area (GBA) 2000 algorithm is used to compute global burnt area. The total area burnt each year (2000– 2007) is estimated to be between 3.5 million km2 and 4.5 million km2 . The total amount of vegetation burnt by cover type according to the Global Land Cover (GLC) 2000 product is reported. Validation was undertaken using 72 Landsat TM scenes was undertaken. Correlation statistics between estimated burnt areas are reported for major vegetation types. The accuracy of this new global data set depends on vegetation type.
Located in Resources / Climate Science Documents
File PDF document A paradigm shift in understanding and quantifying the effects of forest harvesting on floods in snow environments
A well-established precept in forest hydrology is that any reduction of forest cover will always have a progressively smaller effect on floods with increasing return period. The underlying logic in snow environments is that during the largest snowmelt events the soils and vegetation canopy have little additional storage capacity and under these conditions much of the snowmelt will be converted to runoff regardless of the amount or type of vegetation cover. Here we show how this preconceived physical understanding, reinforced by the outcomes of numerous paired watershed studies, is indefensible because it is rationalized outside the flood frequency distribution framework. We conduct a meta-analysis of postharvest data at four catchments (3–37 km2) with moderate level of harvesting (33%–40%) to demonstrate how harvesting increases the magnitude and frequency of all floods on record (19–99 years) and how such effects can increase unchecked with increasing return period as a consequence of changes to both the mean (þ11% to þ35%) and standard deviation (􏰁12% to þ19%) of the flood frequency distribution. We illustrate how forest harvesting has substantially increased the frequency of the largest floods in all study sites regardless of record length and this also runs counter to the prevailing wisdom in hydrological science. The dominant process responsible for these newly emerging insights is the increase in net radiation associated with the conversion from longwave-dominated snowmelt beneath the canopy to shortwave-dominated snowmelt in harvested areas, further amplified or mitigated by basin characteristics such as aspect distribution, elevation range, slope gradient, amount of alpine area, canopy closure, and drainage density. Investigating first order environmental controls on flood frequency distributions, a standard research method in stochastic hydrology, represents a paradigm shift in the way harvesting effects are physically explained and quantified in forest hydrology literature.
Located in Resources / Climate Science Documents
File PDF document A phylogenetic perspective on the distribution of plant diversity
Phylogenetic studies are revealing that major ecological niches are more conserved through evolutionary history than expected, implying that adaptations to major climate changes have not readily been accomplished in all lineages. Phylogenetic niche conservatism has important consequences for the assembly of both local communities and the regional species pools from which these are drawn. If corridors for movement are available, newly emerging environments will tend to be filled by species that filter in from areas in which the relevant adaptations have already evolved, as opposed to being filled by in situ evolution of these adaptations. Examples include intercontinental disjunctions of tropical plants, the spread of plant lineages around the Northern Hemisphere after the evolution of cold tolerance, and the radiation of northern alpine plants into the Andes. These observations highlight the role of phylogenetic knowledge and historical biogeography in explanations of global biodiversity patterns. They also have implications for the future of biodiversity.
Located in Resources / Climate Science Documents
File PDF document A Reconstruction of Regional and Global Temperature for the Past 11,300 Years
Surface temperature reconstructions of the past 1500 years suggest that recent warming is unprecedented in that time. Here we provide a broader perspective by reconstructing regional and global temperature anomalies for the past 11,300 years from 73 globally distributed records. Early Holocene (10,000 to 5000 years ago) warmth is followed by ~0.7°C cooling through the middle to late Holocene (<5000 years ago), culminating in the coolest temperatures of the Holocene during the Little Ice Age, about 200 years ago. This cooling is largely associated with ~2°C change in the North Atlantic. Current global temperatures of the past decade have not yet exceeded peak interglacial values but are warmer than during ~75% of the Holocene temperature history. Intergovernmental Panel on Climate Change model projections for 2100 exceed the full distribution of Holocene temperature under all plausible greenhouse gas emission scenarios.
Located in Resources / Climate Science Documents
File A Review of Climate-Change Adaptation Strategies for Wildlife Management and Biodiversity Conservation
We reviewed the literature and climate- change adaptation plans that have been developed in United States, Canada, England, Mexico, and South Africa and finding 16 general adaptation strategies that relate directly to the conservation of biological diversity. These strategies can be grouped into four broad categories: land and water protection and management; direct species management; monitoring and planning; and law and policy. Tools for implementing these strategies are similar or identical to those already in use by conservationists worldwide (land and water conservation, ecological restoration, agrienvironment schemes, species translocation, captive propagation, monitoring, natural resource planning, and legislation/regulation). Although the review indicates natural resource managers already have many tools that can be used to address climate-change effects, managers will likely need to apply these tools in novel and innovative ways to meet the unprecedented challenges posed by climate change.
Located in Resources / General Resources Holdings
File PDF document A safe operating space for humanity
Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan RockstrÖm and colleagues.
Located in Resources / Climate Science Documents
File PDF document A statistical procedure to determine recent climate change of extreme daily meteorological data as applied at two locations in Northwestern North America
An iterative chi-square method is applied to determine recent climate change of extremes of daily minimum temperature at two locations between an 18- year recent period and a 36-year prior period. The method determines for each of two locations in northwestern North America, Bozeman, Montana, USA and Coldstream, British Columbia, Canada, which values of the extreme daily weather elements are most significantly different between the prior years and the recent years and gives a measure of the weekly significance of that difference. Determination was made of the average percent of each recent year date (plotted weekly) that was im- pacted by extreme weather due to climate change as well as the percentage change in the frequency of the number of extreme days for each period of contiguous significant weeks. During the recent period at both locations, most weeks experienced a greater number of days of extreme high minimum temperature and a fewer number of days of extreme low minimum temperature. The weekly percentage changes indicate that extreme high minimum temperatures at both Bozeman and Coldstream are increasing at the rate of about 10% per decade, with a close corresponding decrease of extreme low minimum temperatures. The major changes in climate were very similar at both locations, with greatest warming occurring during the late winter and early spring and during the late July to August period.
Located in Resources / Climate Science Documents