Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
84 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Biodiversity Risks from Fossil Fuel Extraction
The overlapping of biodiverse areas and fossil fuel reserves indicates high-risk regions.
Located in Resources / Climate Science Documents
File PDF document Biodiversity Under Global Change
Many common plant species, such as prairie grasses, have evolved traits for the efficient capture and use of two key resources that limit terrestrial productivity: nitrogen (N) and carbon dioxide (CO2). Over the past 60 years, human activity has vastly increased the availability of these resources. Atmospheric CO2 concentration has increased by 40%, and N availability has more than doubled. These changes are likely to have important consequences for species interactions, community structure, and ecosystem functioning. On page 1399 of this issue, Reich investigates one important consequence, biodiversity loss, based on a long-term elevated CO2 and nitrogen fertilization experiment.
Located in Resources / Climate Science Documents
Organization Bombay Natural History Society
The Bombay Natural History Society (BNHS), a pan-India wildlife research organization, has been promoting the cause of nature conservation since 1883.
Located in LP Members / Organizations Search
File PDF document BOTANY AND A CHANGING WORLD: INTRODUCTION TO THE SPECIAL ISSUE ON GLOBAL BIOLOGICAL CHANGE
The impacts of global change have heightened the need to understand how organisms respond to and influence these changes. Can we forecast how change at the global scale may lead to biological change? Can we identify systems, processes, and organisms that are most vulnerable to global changes? Can we use this understanding to enhance resilience to global changes? This special issue on global biological change emphasizes the integration of botanical information at different biological levels to gain perspective on the direct and indirect effects of global change. Contributions span a range of spatial scales and include both ecological and evolutionary timescales and highlight work across levels of organization, including cellular and physiological processes, individuals, populations, and ecosystems. Integrative botanical approaches to global change are critical for the eco- logical and evolutionary insights they provide and for the implications these studies have for species conservation and ecosys- tem management. Key words: community dynamics; flowering phenology; functional traits; global biological change; invasive species; land-use patterns; plant–microbial interactions; species interactions.
Located in Resources / Climate Science Documents
File PDF document Both population size and patch quality affect local extinctions and colonizations
Currently, the habitat of many species is fragmented, resulting in small local populations with individuals occasionally dispersing between the remaining habitat patches. In a solitary bee metapopulation, extinction probability was related to both local bee population sizes and pollen resources measured as host plant population size. Patch size, on the other hand, had no additional predictive power. The turnover rate of local bee populations in 63 habitat patches over 4 years was high, with 72 extinction events and 31 colonization events, but the pollen plant population was stable with no extinctions or colonizations. Both pollen resources and bee populations had strong and independent effects on extinction probability, but connectivity was not of importance. Colonizations occurred more frequently within larger host plant populations. For metapopulation survival of the bee, large pollen plant populations are essential, independent of current bee population size.
Located in Resources / Climate Science Documents
File PDF document Buried by bad decisions
From the text: Alas, research shows that when human beings make decisions, they tend to focus on what they are getting and forget about what we are forgoing.
Located in Resources / Climate Science Documents
Can Agriculture and Biodiversity Coexist?
To free up land for biodiversity conservation while satisfying growing food demand, techno-optimist narratives suggest indefinitely increasing agricultural productivity, including through massive pesticide use. But this view, which has made its way from an academic niche into corporate and policy-making circles, overlooks the complexity of natural ecosystems and the market dynamics that regulate access to food.
Located in News & Events
File Can Plants Adapt? New Questions in Climate Change Research
As it becomes increasingly apparent that human activities are partly responsible for global warming, the focus of climate change research is shifting from the churning out of assessments to the pursuit of science that can test the robustness of existing models. The questions now being addressed are becoming more challenging:The questions now being addressed are becoming more challenging: Can water-use efficiency of plants keep up with rising temperatures? Will we see a greening period for some decades, even a century, before facing a rapid browndown as threshold temperatures are reached? Or could the thresholds be reached much sooner because of interactions of biophysical processes? Is the carbon storage issue missing the point?
Located in Resources / Climate Science Documents
File PDF document Classification of Climate Change-Induced Stresses on Biological Diversity
Conservation actions need to account for and be adapted to address changes that will occur under global climate change. The identification of stresses on biological diversity (as defined in the Convention on Biological Diversity) is key in the process of adaptive conservation management. We considered any impact of climate change on biological diversity a stress because such an effect represents a change (negative or positive) in key ecological attributes of an ecosystem or parts of it. We applied a systemic approach and a hierarchical framework in a comprehensive classification of stresses to biological diversity that are caused directly by global climate change. Through analyses of 20 conservation sites in 7 countries and a review of the literature, we identified climate-change-induced stresses. We grouped the identified stresses according to 3 levels of biological diversity: stresses that affect individuals and populations, stresses that affect biological communities, and stresses that affect ecosystem structure and function. For each stress category, we differentiated 3 hierarchical levels of stress: stress class (thematic grouping with the coarsest resolution, 8); general stresses (thematic groups of specific stresses, 21); and specific stresses (most detailed definition of stresses, 90). We also compiled an overview of effects of climate change on ecosystem services using the categories of the Millennium Ecosystem Assessment and 2 additional categories. Our classification may be used to identify key climate-change-related stresses to biological diversity and may assist in the development of appropriate conservation strategies. The classification is in list format, but it accounts for relations among climate-change-induced stresses. Keywords: adaptation, conservation, strategies,adaptive management,climatechange,conservation planning, conservation targets, hierarchical framework, threats to biological diversity
Located in Resources / Climate Science Documents
File PDF document Climate change and the ecologist
The evidence for rapid climate change now seems overwhelming. Global temperatures are predicted to rise by up to 4 °C by 2100, with associated alterations in precipitation patterns. Assessing the consequences for biodiversity, and how they might be mitigated, is a Grand Challenge in ecology.
Located in Resources / Climate Science Documents