Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
16 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document A general integrative model for scaling plant growth, carbon flux, and functional trait spectra
Linking functional traits to plant growth is critical for scaling attributes of organisms to the dynamics of ecosystems (1,2) and for understanding how selection shapes integrated botanical phenotypes (3). However, a general mechanistic theory showing how traits specifically influence carbon and biomass flux within and across plants is needed. Building on foundational work on relative growth rate (4–6), recent work on functional trait spectra (7–9), and metabolic scaling theory (10,11), here we derive a generalized trait-based model of plant growth. In agreement with a wide variety of empirical data, our model uniquely predicts how key functional traits interact to regulate variation in relative growth rate, the allometric growth normalizations for both angiosperms and gymnosperms, and the quantitative form of several functional trait spectra relationships. The model also provides a general quantitative framework to incorporate additional leaf-level trait scaling relationships (7,8) and hence to unite functional trait spectra with theories of relative growth rate, and metabolic scaling. We apply the model to calculate carbon use efficiency. This often ignored trait, which may influence variation in relative growth rate, appears to vary directionally across geographic gradients. Together, our results show how both quantitative plant traits and the geometry of vascular transport networks can be merged into a common scaling theory. Our model provides a framework for predicting not only how traits covary within an integrated allometric phenotype but also how trait variation mechanistically influences plant growth and carbon flux within and across diverse ecosystems.
Located in Resources / Climate Science Documents
File PDF document Aeolian process effects on vegetation communities in an arid grassland ecosystem
Many arid grassland communities are changing from grass dominance to shrub dominance, but the mechanisms involved in this conversion process are not completely understood. Aeolian processes likely contribute to this conversion from grassland to shrubland. The purpose of this research is to provide information regarding how vegetation changes occur in an arid grassland as a result of aeolian sediment transport. The experimental design included three treatment blocks, each with a 25 × 50 m area where all grasses, semi-shrubs, and perennial forbs were hand removed, a 25 × 50 m control area with no manipulation of vegetation cover, and two 10 × 25 m plots immediately downwind of the grass-removal and control areas in the prevailing wind direction, 19◦ north of east, for measuring vegetation cover. Aeolian sediment flux, soil nutrients, and soil seed bank were monitored on each treatment area and downwind plot. Grass and shrub cover were measured on each grass-removal, control, and downwind plot along continuous line transects as well as on 5 × 10 m subplots within each downwind area over four years following grass removal. On grass-removal areas, sediment flux increased significantly, soil nutrients and seed bank were depleted, and Prosopis glandulosa shrub cover increased compared to controls. Additionally, differential changes for grass and shrub cover were observed for plots downwind of vegetation-removal and control areas. Grass cover on plots downwind of vegetation-removal areas decreased over time (2004–2007) despite above average rainfall throughout the period of observation, while grass cover increased downwind of control areas; P. glandulosa cover increased on plots downwind of vegetation-removal areas, while decreasing on plots downwind of control areas. The relationships between vegetation changes and aeolian sediment flux were significant and were best described by a logarithmic function, with decreases in grass cover and increases in shrub cover occurring with small increases in aeolian sediment flux
Located in Resources / Climate Science Documents
File Pascal source code Agenda - March 11, 2015 Workshop
Urban Woodlands Conservation and Management Workshop. Organized and facilitated by the National Park Service to identify and create opportunities for greater collaboration among urban woodland researchers and managers working to restore and manage urban woodland ecosystems. To view the goals and objectives of the workshop, please open the workshop agenda.
Located in Cultural Resources / Urban Conservation / Urban Woodlands Conservation and Restoration
File PDF document Assemblage Time Series Reveal Biodiversity Change but Not Systematic Loss
The extent to which biodiversity change in local assemblages contributes to global biodiversity loss is poorly understood. We analyzed 100 time series from biomes across Earth to ask how diversity within assemblages is changing through time. We quantified patterns of temporal a diversity, measured as change in local diversity, and temporal b diversity, measured as change in community composition. Contrary to our expectations, we did not detect systematic loss of a diversity. However, community composition changed systematically through time, in excess of predictions from null models. Heterogeneous rates of environmental change, species range shifts associated with climate change, and biotic homogenization may explain the different patterns of temporal a and b diversity. Monitoring and understanding change in species composition should be a conservation priority.
Located in Resources / Climate Science Documents
File PDF document Biotic Multipliers of Climate Change
A focus on species interactions may improve predictions of the effects of climate change on ecosystems.
Located in Resources / Climate Science Documents
File PDF document BOTANY AND A CHANGING WORLD: INTRODUCTION TO THE SPECIAL ISSUE ON GLOBAL BIOLOGICAL CHANGE
The impacts of global change have heightened the need to understand how organisms respond to and influence these changes. Can we forecast how change at the global scale may lead to biological change? Can we identify systems, processes, and organisms that are most vulnerable to global changes? Can we use this understanding to enhance resilience to global changes? This special issue on global biological change emphasizes the integration of botanical information at different biological levels to gain perspective on the direct and indirect effects of global change. Contributions span a range of spatial scales and include both ecological and evolutionary timescales and highlight work across levels of organization, including cellular and physiological processes, individuals, populations, and ecosystems. Integrative botanical approaches to global change are critical for the eco- logical and evolutionary insights they provide and for the implications these studies have for species conservation and ecosys- tem management. Key words: community dynamics; flowering phenology; functional traits; global biological change; invasive species; land-use patterns; plant–microbial interactions; species interactions.
Located in Resources / Climate Science Documents
File PDF document Coupling of Vegetation Growing Season Anomalies and Fire Activity with Hemispheric and Regional-Scale Climate Patterns in Central and East Siberia
An 18-yr time series of the fraction of absorbed photosynthetically active radiation (fAPAR) taken in by the green parts of vegetation data from the NOAA Advanced Very High Resolution Radiometer (AVHRR) instrument series was analyzed for interannual variations in the start, peak, end, and length of the season of vegetation photosynthetic activity in central and east Siberia. Variations in these indicators of seasonality can give important information on interactions between the biosphere and atmosphere. A second-order local moving window regression model called the “camelback method” was developed to determine the dates of phenological events at subcontinental scale. The algorithm was validated by comparing the estimated dates to phenological field observations. Using spatial correlations with temperature and precipitation data and climatic oscillation indices, two geographically distinct mechanisms in the system of climatic controls of the biosphere in Siberia are postulated: central Siberia is controlled by an “Arctic Oscillation–temperature mechanism,” while east Siberia is controlled by an “El Niño–precipitation mechanism.” While the analysis of data from 1982 to 1991 indicates a slight increase in the length of the growing season for some land-cover types due to an earlier beginning of the growing season, the overall trend from 1982 to 1999 is toward a slightly shorter season for some land-cover types caused by an earlier end of season. The Arctic Oscillation tended toward a more positive phase in the 1980s leading to enhanced high pressure system prevalence but toward a less positive phase in the 1990s. The results suggest that the two mechanisms also control the fire regimes in central and east Siberia. Several extreme fire years in central Siberia were associated with a highly positive Arctic Oscillation phase, while several years with high fire damage in east Siberia occurred in El Niño years. An analysis of remote sensing data of forest fire partially supports this hypothesis VOLUME 20
Located in Resources / Climate Science Documents
File PDF document Divergent phenological response to hydroclimate variability in forested mountain watersheds
Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep terrain, leaf phenology responds to topoclimate in complex ways, and can produce specific and measurable shifts in landscape forest patterns. The onset of spring is usually delayed at a specific rate with increasing elevation (often called Hopkins’ Law; Hopkins, 1918), reflecting the dominant controls of temperature on greenup timing. Contrary with greenup, leaf senescence shows inconsistent trends along elevation gradients. Here, we present mechanisms and an explanation for this variability and its significance for ecosystem patterns and services in response to climate. We use moderate-resolution imaging spectro-radiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to derive landscape-induced phenological patterns over topoclimate gradients in a humid temperate broadleaf forest in southern Appalachians. These phenological patterns are validated with different sets of field observations. Our data demonstrate that divergent behavior of leaf senescence with elevation is closely related to late growing season hydroclimate variability in temperature and water balance patterns. Specifically, a drier late growing season is associated with earlier leaf senescence at low elevation than at middle elevation. The effect of drought stress on vegetation senescence timing also leads to tighter coupling between growing season length and ecosystem water use estimated from observed precipitation and runoff generation. This study indicates increased late growing season drought may be leading to divergent ecosystem response between high and low elevation forests. Landscape-induced phenological patterns are easily observed over wide areas and may be used as a unique diagnos- tic for sources of ecosystem vulnerability and sensitivity to hydroclimate change. Keywords: drought deciduousness, hydroclimate variability, landscape phenology, MODIS NDVI, topoclimate gradient
Located in Resources / Climate Science Documents
File PDF document Drought, disease, defoliation and death: forest pathogens as agents of past vegetation change
The temperate and boreal forests of Europe and North America have been subject to repeated pathogen (fungal disease and phytophagus insect) outbreaks over the last 100 years. Palaeoecology can, potentially, offer a long-term perspective on such disturbance episodes, providing information on their triggers, frequency and impact. Mid-Holocene declines in Tsuga and Ulmus pollen dominate the Quaternary literature on forest pathogens, yet the role of pathogens, and even the presence of pathogenic fungal diseases, during these events has yet to be established. Pathogen-focused research strategies, informed by the sequence of events documented in modern outbreaks, and undertaken at high temporal resolution using a multi-proxy approach, are required. It is argued that forest pathogens are likely to have been significant agents of past vegetation change, even in cases where climate change was the primary stress factor.
Located in Resources / Climate Science Documents
File Formation of soil organic matter via biochemical and physical pathways of litter mass loss
Soil organic matter is the largest terrestrial carbon pool (1). The pool size depends on the balance between formation of soil organic matter from decomposition of plant litter and its mineralization to inorganic carbon. Knowledge of soil organic matter formation remains limited (2) and current C numerical models assume that stable soil organic matter is formed primarily from recalcitrant plant litter (3) . However, labile components of plant litter could also form mineral-stabilized soil organic matter (4). Here we followed the decomposition of isotopically labelled above-ground litter and its incorporation into soil organic matter over three years in a grassland in Kansas, USA, and used laboratory incubations to determine the decay rates and pool structure of litter-derived organic matter. Early in decomposition, soil organic matter formed when non-structural compounds were lost from litter. Soil organic matter also formed at the end of decomposition, when both non-structural and structural compounds were lost at similar rates. We conclude that two pathways yield soil organic matter efficiently. A dissolved organic matter–microbial path occurs early in decomposition when litter loses mostly non-structural compounds, which are incorporated into microbial biomass at high rates, resulting in efficient soil organic matter formation. An equally efficient physical-transfer path occurs when litter fragments move into soil.
Located in Resources / Climate Science Documents