Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
84 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Ecological extinction and evolution in the brave new ocean
The great mass extinctions of the fossil record were a major creative force that provided entirely new kinds of opportunities for the subsequent explosive evolution and diversification of surviving clades. Today, the synergistic effects of human impacts are laying the groundwork for a comparably great Anthropocene mass extinction in the oceans with unknown ecological and evolutionary consequences. Synergistic effects of habitat destruction, overfishing, introduced species, warming, acidification, toxins, and massive runoff of nutrients are transforming once complex ecosystems like coral reefs and kelp forests into monotonous level bottoms, transforming clear and productive coastal seas into anoxic dead zones, and transforming complex food webs topped by big animals into simplified, microbially dominated ecosystems with boom and bust cycles of toxic dinoflagel- late blooms, jellyfish, and disease. Rates of change are increasingly fast and nonlinear with sudden phase shifts to novel alternative community states. We can only guess at the kinds of organisms that will benefit from this mayhem that is radically altering the selective seascape far beyond the consequences of fishing or warming alone. The prospects are especially bleak for animals and plants compared with metabolically flexible microbes and algae. Halting and ultimately reversing these trends will require rapid and fundamental changes in fisheries, agricultural practice, and the emissions of green- house gases on a global scale.
Located in Resources / Climate Science Documents
File PDF document Ecological Effects of Prescribed Fire Season: A Literature Review and Synthesis for Managers
Prescribed burning may be conducted at times of the year when fires were infrequent historically, leading to concerns about potential adverse effects on vegetation and wildlife. Historical and prescribed fire regimes for different regions in the continental United States were compared and literature on season of prescribed burning synthesized. In regions and vegetation types where considerable differences in fuel consumption exist among burning seasons, the effects of prescribed fire season appears, for many ecological variables, to be driven more by fire-intensity differences among seasons than by phenology or growth stage of organisms at the time of fire. Where fuel consumption differs little among burning seasons, the effect of phenology or growth stage of organisms is often more apparent, presumably because it is not overwhelmed by fire-intensity differences. Most species in ecosystems that evolved with fire appear to be resilient to one or few out-of-season prescribed burn(s). However, a variable fire regime including prescribed burns at different times of the year may alleviate the potential for undesired changes and maximize biodiversity.
Located in Resources / Climate Science Documents
File PDF document BOTANY AND A CHANGING WORLD: INTRODUCTION TO THE SPECIAL ISSUE ON GLOBAL BIOLOGICAL CHANGE
The impacts of global change have heightened the need to understand how organisms respond to and influence these changes. Can we forecast how change at the global scale may lead to biological change? Can we identify systems, processes, and organisms that are most vulnerable to global changes? Can we use this understanding to enhance resilience to global changes? This special issue on global biological change emphasizes the integration of botanical information at different biological levels to gain perspective on the direct and indirect effects of global change. Contributions span a range of spatial scales and include both ecological and evolutionary timescales and highlight work across levels of organization, including cellular and physiological processes, individuals, populations, and ecosystems. Integrative botanical approaches to global change are critical for the eco- logical and evolutionary insights they provide and for the implications these studies have for species conservation and ecosys- tem management. Key words: community dynamics; flowering phenology; functional traits; global biological change; invasive species; land-use patterns; plant–microbial interactions; species interactions.
Located in Resources / Climate Science Documents
File PDF document Conservation value of forests attacked by bark beetles: Highest number of indicator species is found in early successional stages
Heavy natural disturbance in large protected areas of former commercial forests increasingly evokes European parliaments to call for management intervention because a loss of habitats and species is feared. In contrast, natural early successional habitats have recently been recognised as important for conservation. Current knowledge in this field mostly results from studies dealing only with selected taxa. Here we analyse the success of species across 24 lineages of three kingdoms in the Bavarian Forest National Park (Germany) after 15 years of a European spruce bark beetle (Ips typographus L.) outbreak that led to rapid canopy opening. Using indicator species analysis, we found 257 species with a significant preference for open forests and 149 species with a preference for closed forests, but only 82 species with a preference for the stand conditions transitional between open and closed forests. The large number of species with a preference for open forests across lineages supports the role of this bark beetle as a keystone species for a broad array of species. The slowdown of the outbreak after 15 years in the core zone of the national park resulted in less than half of the area being affected, due to variability in stand ages and tree species mixtures. Our case study is representative of the tree species composition and size of many large protected montane areas in Central European countries and illustrates that (1) natural disturbances increase biodiversity in formerly managed forests and (2) a montane protected area spanning 10,000 ha of low range mountains is likely sufficient to allow natural disturbances without a biased loss of closed-forest species.
Located in Resources / Climate Science Documents
File PDF document Biodiversity and ecosystem multifunctionality
Biodiversity loss can affect ecosystem functions and services1–4. Individual ecosystem functions generally show a positive asymptotic relationship with increasing biodiversity, suggesting that some species are redundant5–8. However, ecosystems are managed and conserved for multiple functions, which may require greater biodiversity. Here we present an analysis of published data from grassland biodiversity experiments9–11, and show that ecosystem multifunctionality does require greater numbers of species. We analysed each ecosystem function alone to identify species with desirable effects. We then calculated the number of species with positive effects for all possible combinations of functions. Our results show appreciable differences in the sets of species influ- encing different ecosystem functions, with average proportional overlap of about 0.2 to 0.5. Consequently, as more ecosystem pro- cesses were included in our analysis, more species were found to affect overall functioning. Specifically, for all of the analysed experiments, there was a positive saturating relationship between the number of ecosystem processes considered and the number of species influencing overall functioning. We conclude that because different species often influence different functions, studies focus- ing on individual processes in isolation will underestimate levels of biodiversity required to maintain multifunctional ecosystems.
Located in Resources / Climate Science Documents
File PDF document Attributing physical and biological impacts to anthropogenic climate change
Significant changes in physical and biological systems are occurring on all continents and in most oceans, with a concentration of available data in Europe and North America. Most of these changes are in the direction expected with warming temperature. Here we show that these changes in natural systems since at least 1970 are occurring in regions of observed temperature increases, and that these temperature increases at continental scales cannot be explained by natural climate variations alone. Given the conclusions from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report that most of the observed increase in global average temperatures since the mid-twentieth century is very likely to be due to the observed increase in anthropogenic greenhouse gas concentrations, and furthermore that it is likely that there has been significant anthropogenic warming over the past 50 years averaged over each continent except Antarctica, we conclude that anthropogenic climate change is having a significant impact on physical and biological systems globally and in some continents.
Located in Resources / Climate Science Documents
File PDF document A safe operating space for humanity
Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan RockstrÖm and colleagues.
Located in Resources / Climate Science Documents
File PDF document Approaching a state shift in Earth’s biosphere
Localized ecological systems are known to shift abruptly and irreversibly from one state to another when they are forced across critical thresholds. Here we review evidence that the global ecosystem as a whole can react in the same way and is approaching a planetary-scale critical transition as a result of human influence. The plausibility of a planetary-scale ‘tipping point’ highlights the need to improve biological forecasting by detecting early warning signs of critical transitions on global as well as local scales, and by detecting feedbacks that promote such transitions. It is also necessary to address root causes of how humans are forcing biological changes.
Located in Resources / Climate Science Documents
File PDF document A global synthesis reveals biodiversity loss as a major driver of ecosystem change
Evidence is mounting that extinctions are altering key processes important to the productivity and sustainability of Earth’s ecosystems (1–4). Further species loss will accelerate change in ecosystem processes (5–8), but it is unclear how these effects compare to the direct effects of other forms of environmental change that are both driving diversity loss and altering ecosystem function. Here we use a suite of meta-analyses of published data to show that the effects of species loss on productivity and decomposition—two processes important in all ecosystems—are of comparable magnitude to the effects of many other global environmental changes. In experiments, intermediate levels of species loss (21–40%) reduced plant production by 5–10%, comparable to previously documented effects of ultraviolet radiation and climate warming. Higher levels of extinction (41–60%) had effects rivalling those of ozone, acidification, elevated CO2 and nutrient pollution. At intermediate levels, species loss generally had equal or greater effects on decomposition than did elevated CO2 and nitrogen addition. The identity of species lost also had a large effect on changes in productivity and decomposition, generating a wide range of plausible outcomes for extinction. Despite the need for more studies on interactive effects of diversity loss and environmental changes, our analyses clearly show that the ecosystem consequences of local species loss are as quantitatively significant as the direct effects of several global change stressors that have mobilized major international concern and remediation efforts (9).
Located in Resources / Climate Science Documents
File PDF document Biodiversity loss and its impact on humanity
The most unique feature of Earth is the existence of life, and the most extraordinary feature of life is its diversity. Approximately 9 million types of plants, animals, protists and fungi inhabit the Earth. So, too, do 7 billion people. Two decades ago, at the first Earth Summit, the vast majority of the world’s nations declared that human actions were dismantling the Earth’s ecosystems, eliminating genes, species and biological traits at an alarming rate. This observation led to the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper.
Located in Resources / Climate Science Documents