Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
49 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Energetic and biomechanical constraints on animal migration distance
Animal migration is one of the great wonders of nature, but the factors that determine how far migrants travel remain poorly understood. We present a new quantitative model of animal migration and use it to describe the maximum migration distance of walking, swimming and flying migrants. The model combines biomechanics and metabolic scaling to show how maximum migration distance is constrained by body size for each mode of travel. The model also indicates that the number of body lengths travelled by walking and swimming migrants should be approximately invariant of body size. Data from over 200 species of migratory birds, mammals, fish, and invertebrates support the central conclusion of the model – that body size drives variation in maximum migration distance among species through its effects on metabolism and the cost of locomotion. The model provides a new tool to enhance general understanding of the ecology and evolution of migration.
Located in Resources / Climate Science Documents
File PDF document EPA and the Army Corps’ Proposed Rule to Define “Waters of the United States”
Excerpt from summary : According to the agencies, the proposed rule would revise the existing regulatory definition of “waters of the United States” consistent with legal rulings—especially the Supreme Court cases—and science concerning the interconnectedness of tributaries, wetlands, and other waters to downstream waters and effects of these connections on the chemical, physical, and biological integrity of downstream waters. Waters that are “jurisdictional” are subject to the multiple regulatory requirements of the CWA: standards, discharge limitations, permits, and enforcement. Non-jurisdictional waters, in contrast, do not have the federal legal protection of those requirements. This report describes the March 25 proposed rule and includes a table comparing the existing regulatory language that defines “waters of the United States” with that in the proposal.
Located in Resources / Climate Science Documents
File PDF document Effects of Climatic Variability and Change on Forest Ecosystems: General Technical Report PNW-GTR-870 December 2012
This report is a scientific assessment of the current condition and likely future condition of forest resources in the United States relative to climatic variability and change. It serves as the U.S. Forest Service forest sector technical report for the National Climate Assessment and includes descriptions of key regional issues and examples of a risk-based framework for assessing climate-change effects. By the end of the 21st century, forest ecosystems in the United States will differ from those of today as a result of changing climate. Although increases in temperature, changes in precipitation, higher atmospheric concentrations of carbon dioxide (CO2), and higher nitrogen (N) deposition may change ecosystem structure and function, the most rapidly visible and most significant short-term effects on forest ecosystems will be caused by altered disturbance regimes. For example, wildfires, insect infestations, pulses of erosion and flooding, and drought-induced tree mortality are all expected to increase during the 21st century. These direct and indirect climate-change effects are likely to cause losses of ecosystem services in some areas, but may also improve and expand ecosystem services in others. Some areas may be particularly vulnerable because current infrastructure and resource production are based on past climate and steady-state conditions. The ability of communities with resource-based economies to adapt to climate change is linked to their direct exposure to these changes, as well as to the social and institutional structures present in each environment. Human communities that have diverse economies and are resilient to change today will also be prepared for future climatic stresses.
Located in Resources / Climate Science Documents
File PDF document Beaver (Castor canadensis) mitigate the effects of climate on the area of open water in boreal wetlands in western Canada
Shallow open water wetlands provide critical habitat for numerous species, yet they have become increasingly vulnerable to drought and warming temperatures and are often reduced in size and depth or disappear during drought. We examined how temperature, precipitation and beaver (Castor canadensis) activity influenced the area of open water in wetlands over a 54- year period in the mixed-wood boreal region of east-central Alberta, Canada. This entire glacial landscape with intermittently connected drainage patterns and shallow wetland lakes with few streams lost all beaver in the 19th century, with beaver returning to the study area in 1954. We assessed the area of open water in wetlands using 12 aerial photo mosaics from 1948 to 2002, which covered wet and dry periods, when beaver were absent on the landscape to a time when they had become well established. The number of active beaver lodges explained over 80% of the variability in the area of open water during that period. Temperature, precipitation and climatic variables were much less important than beaver in maintaining open water areas. In addition, during wet and dry years, the presence of beaver was associated with a 9-fold increase in open water area when compared to a period when beaver were absent from those same sites. Thus, beaver have a dramatic influence on the creation and maintenance of wetlands even during extreme drought. Given the important role of bea- ver in wetland preservation and in light of a drying climate in this region, their removal should be considered a wetland disturbance that should be avoided. Beaver Castor canadensis Drought East-central Alberta Elk Island National Park Mixed-wood boreal Wetland conservation
Located in Resources / Climate Science Documents
File A globally coherent fingerprint of climate change impacts across natural systems
Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a ‘systematic trend’. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates ‘very high confidence’ (as laid down by the IPCC) that climate change is already affecting living systems.
Located in Resources / Climate Science Documents
File PDF document Accounting for Environmental Assets
A country can cut down its forests, erode its soils, pollute its aquifers and hunt its wildlife and fisheries to extinction, but its measured income is not affected as these assets disappear. Impoverishment is taken for progress
Located in Resources / Climate Science Documents
File PDF document Challenges in the conservation, rehabilitation and recovery of native stream salmonid populations: beyond the 2010 Luarca symposium
– In May 2010, I chaired a session on challenges to salmonid conservation at the international symposium ‘Advances in the population ecology of stream salmonids’ in Luarca, Spain. I suggested that in addition to scientific challenges, a major challenge will be improving the links between ecologists, conservationists and policy makers. Because the Luarca symposium focused mainly on ecological research, little time was explicitly devoted to conservation. My objective in this paper is to further discuss the role of ecological research in informing salmonid conservation. I begin with a brief overview of research highlights from the symposium. I then use selected examples to show that ecological research has already contributed much towards informing salmonid conservation, but that ecologists will always be faced with limitations in their predictive ability. I suggest that conservation will need to move forward regardless of these limitations, and I call attention to some recent efforts wherein ecological research has played a crucial role. I conclude that ecologists should take urgent action to ensure that their results are availableto inform resource managers, conservation organisations and policy makers regarding past losses and present threats to native, locally-adapted salmonid stocks.
Located in Resources / Climate Science Documents
File PDF document Climate change impacts on the biophysics and economics of world fisheries
Global marine fisheries are underperforming economically because of overfishing, pollution and habitat degradation. Added to these threats is the looming challenge of climate change. Observations, experiments and simulation models show that climate change would result in changes in primary productivity, shifts in distribution and changes in the potential yield of exploited marine species, resulting in impacts on the economics of fisheries worldwide. Despite the gaps in understanding climate change effects on fisheries, there is sufficient scientific information that highlights the need to implement climate change mitigation and adaptation policies to minimize impacts on fisheries.
Located in Resources / Climate Science Documents
File PDF document Conservation VALUE OF ROADLESS AREAS FOR VULNERABLE FISH AND Wildlife Species in the Crown of the Continent Ecosystem, Montana
The Crown of the Continent Ecosystem is one of the most spectacular landscapes in the world and most ecologically intact ecosystem remaining in the contiguous United States. Straddling the Continental Divide in the heart of the Rocky Mountains, the Crown of the Continent Ecosystem extends for >250 miles from the fabled Blackfoot River valley in northwest Montana north to Elk Pass south of Banff and Kootenay National Parks in Canada. It reaches from the short-grass plains along the eastern slopes of the Rockies westward nearly 100 miles to the Flathead and Kootenai River valleys. The Crown sparkles with a variety of dramatic landscapes, clean sources of blue waters, and diversity of plants and animals.Over the past century, citizens and government leaders have worked hard to save the core of this splendid ecosystem in Montana by establishing world-class parks and wildernesses – coupled with conservation of critical wildlife habitat on state and private lands along the periphery. These include jewels such as Glacier National Park, the Bob Marshall-Scapegoat-Great Bear Wilderness, the first-ever Tribal Wilderness in the Mission Mountains, numerous State of Montana Wildlife Management Areas (WMAs), and vital private lands through land trusts such as The Nature Conservancy. Their combined efforts have protected 3.3 million acres and constitute a truly impressive commitment to conservation. It was a remarkable legacy and great gift …but, in the face of new challenges, it may not have been enough.
Located in Resources / Climate Science Documents
File ECMAScript program Characterizing coal and mineral mines as a regional source of stress to stream fish assemblages
Mining impacts on stream systems have historically been studied over small spatial scales, yet investigations over large areas may be useful for characterizing mining as a regional source of stress to stream fishes. The associations between co-occurring stream fish assemblages and densities of various “classes” of mining occurring in the same catchments were tested using threshold analysis. Threshold analysis identifies the point at which fish assemblages change substantially from best available habitat conditions with increasing disturbance. As this occurred over large regions, species comprising fish assemblages were represented by various functional traits as well as other measures of interest to management (characterizing reproductive ecology and life history, habitat preferences, trophic ecology, assemblage diversity and evenness, tolerance to anthropogenic disturbance and state-recognized game species). We used two threshold detection methods: change-point analysis with indicator analysis and piecewise linear regression. We accepted only those thresholds that were highly statistically significant (p 0.01) for both techniques and overlapped within 5% error. We found consistent, wedge-shaped declines in multiple fish metrics with increasing levels of mining in catchments, suggesting mines are a regional source of disturbance. Threshold responses were consistent across the three ecoregions occurring at low mine densities. For 47.2% of the significant thresholds, a density of only 0.01 mines/km2 caused a threshold response. In fact, at least 25% of streams in each of our three study ecoregions have mine densities in their catchments with the potential to affect fish assemblages. Compared to other anthropogenic impacts assessed over large areas (agriculture, impervious surface or urban land use), mining had a more pronounced and consistent impact on fish assemblages. Threshold analysis Fish functional traits Landscape influences Game fishes Mining Rivers
Located in Resources / Climate Science Documents