Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
6 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
OpenET uses best available science to provide easily accessible satellite-based estimates of evapotranspiration (ET) for improved water management across the western United States. Using the Data Explorer, users can explore ET data at the field scale for millions of individual fields or at the original quarter-acre resolution of the satellite data.
Located in Apps, Maps, & Data
Lee joins me today to share his passion for improving water irrigation efficiency as well as water sustainability. He describes how he became interested in water irrigation and what led him to work with CropMetrics. He explains how their system works and how it can benefit growers. Lee also discusses what a transaction would look like with a farmer and how they convince them to join.
Located in Resources / Podcasts
File Troff document Increasing Northern Hemisphere water deficit
A monthly water-balance model is used with CRUTS3.1 gridded monthly precip- itation and potential evapotranspiration (PET) data to examine changes in global water deficit (PET minus actual evapotranspiration) for the Northern Hemisphere (NH) for the years 1905 through 2009. Results show that NH deficit increased dramatically near the year 2000 during both the cool (October through March) and warm (April through September) seasons. The increase in water deficit near 2000 coincides with a substantial increase in NH temperature and PET. The most pronounced increases in deficit occurred for the latitudinal band from 0 to 40°N. These results indicate that global warming has increased the water deficit in the NH and that the increase since 2000 is unprecedented for the 1905 through 2009 period. Additionally, coincident with the increase in deficit near 2000, mean NH runoff also increased due to increases in P. We explain the apparent contradiction of concurrent increases in deficit and increases in runoff.
Located in Resources / Climate Science Documents
File Global change and the groundwater management challenge
With rivers in critical regions already exploited to capacity throughout the world and ground- water overdraft as well as large-scale contamination occurring in many areas, we have entered an era in which multiple simultaneous stresses will drive water management. Increasingly, groundwater resources are taking a more prominent role in providing freshwater supplies. We discuss the competing fresh ground- water needs for human consumption, food production, energy, and the environment, as well as physical hazards, and conflicts due to transboundary overexploitation. During the past 50 years, groundwater man- agement modeling has focused on combining simulation with optimization methods to inspect important problems ranging from contaminant remediation to agricultural irrigation management. The compound challenges now faced by water planners require a new generation of aquifer management models that address the broad impacts of global change on aquifer storage and depletion trajectory management, land subsidence, groundwater-dependent ecosystems, seawater intrusion, anthropogenic and geogenic contamination, supply vulnerability, and long-term sustainability. The scope of research efforts is only beginning to address complex interactions using multiagent system models that are not readily formulated as optimization problems and that consider a suite of human behavioral responses.
Located in Resources / Climate Science Documents
File PDF document Columbia Water Center White Paper America’s Water Risk: Water Stress and Climate Variability
The emerging awareness of the dependence of business on water has resulted in increasing awareness of the concept of “Water Risk” and the diverse ways in which water can pose threats to businesses in certain regions and sectors. Businesses seek to secure sustainable income. To do so, they need to maintain a competitive advantage and brand differentiation. They need secure and stable supply chains. Their exposure risks related to increasing scarcity of water can come in a variety of forms at various points in the supply chain. Given increasing water scarcity and the associated deterioration of the quantity and quality of water sources in many parts of the world, many “tools” have been developed to map water scarcity riskor water risk. Typically, these tools are based on estimates of the average water supply and demand in each unit of analysis.Often, they are associated with river basins, while business is associated with cities or counties. They provide a useful first look at the potential imbalance of supply and demand to businesses.
Located in Resources / Climate Science Documents
File PDF document Effects of irrigation on global climate during the 20th century
Various studies have documented the effects of modern‐day irrigation on regional and global climate, but none, to date, have considered the time‐varying impact of steadily increasing irrigation rates on climate during the 20th century. We investigate the impacts of observed irrigation changes over this century with two ensemble simulations using an atmosphere general circulation model. Both ensembles are forced with transient climate forcings and observed sea surface temperatures from 1902 to 2000; one ensemble includes irrigation specified by a time‐varying data set of irrigation water withdrawals. Early in the century, irrigation is primarily localized over southern and eastern Asia, leading to significant cooling in boreal summer (June–August) over these regions. This cooling spreads and intensifies by century’s end, following the rapid expansion of irrigation over North America, Europe, and Asia. Irrigation also leads to boreal winter (December–February) warming over parts of North America and Asia in the latter part of the century, due to enhanced downward longwave fluxes from increased near‐surface humidity. Precipitation increases occur primarily downwind of the major irrigation areas, although precipitation in parts of India decreases due to a weaker summer monsoon. Irrigation begins to significantly reduce temperatures and temperature trends during boreal summer over the Northern Hemisphere midlatitudes and tropics beginning around 1950; significant increases in precipitation occur in these same latitude bands. These trends reveal the varying importance of irrigation‐climate interactions and suggest that future climate studies should account for irrigation, especially in regions with unsustainable irrigation resources.
Located in Resources / Climate Science Documents