Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
120 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
Restoration Effort Moving Forward with Land Acquisitions as Part of $21 Million Palmerton Zinc Natural Resource Damages Settlement
State and federal environmental officials announced today that two land purchases have been made to benefit the wildlife, people and landscape of the Kittatinny Ridge.
Located in News & Events
Person Richter, Stephen
Population genetics; land-use; amphibian evolutionary ecology; conservation; wetland ecology; management
Located in Expertise Search
File PDF document Scaling up from gardens: biodiversity conservation in urban environments
As urbanisation increases globally and the natural environment becomes increasingly fragmented, the importance of urban green spaces for biodiversity conservation grows. In many countries, private gardens area major component of urban green space and can provideconsiderable biodiversity benefits. Gardens and adjacent habitats form interconnected networks and a landscape ecology framework is necessary to understand the relationship between the spatial configuration of garden patches and their constituent biodiversity. A scale-dependent tension is apparent in garden management, whereby the individual garden is much smaller than the unit of management needed to retain viable populations. To overcome this, here we suggest mechanisms for encouraging ‘wildlife-friendly’ management of collections of gardens across scales from the neighbourhood to the city.
Located in Resources / Climate Science Documents
File PDF document Scenarios of future land use change around United States’ protected areas
Land use change around protected areas can diminish their conservation value, making it important to predict future land use changes nearby. Our goal was to evaluate future land use changes around protected areas of different types in the United States under different socioeconomic scenarios. We analyzed econometric-based projections of future land use change to capture changes around 1260 protected areas, including National Forests, Parks, Refuges, and Wilderness Areas, from 2001 to 2051, under different land use policies and crop prices. Our results showed that urban expansion around protected areas will continue to be a major threat, and expand by 67% under business-as-usual conditions. Concomitantly, a substantial number of protected areas will lose natural vegetation in their surroundings. National land-use policies or changes in crop prices are not likely to affect the overall pattern of land use, but can have effects in certain regions. Discouraging urbanization through zoning, for example, can reduce future urban pressures around National Forests and Refuges in the East, while the implementation of an afforestation policy can increase the amount of natural vegetation around some Refuges throughout the U.S. On the other hand, increases in crop prices can increase crop/pasture cover around some protected areas, and limit the potential recovery of natural vegetation. Overall, our results highlight that future land-use change around protected areas is likely to be substantial but variable among regions and protected area types. Safeguarding the conservation value of protected areas may require serious consideration of threats and opportunities arising from future land use.
Located in Resources / Climate Science Documents
File Solar energy development impacts on land cover change and protected areas
Decisions determining the use of land for energy are of exigent concern as land scarcity, the need for ecosystem services, and demands for energy generation have concomitantly increased globally. Utility-scale solar energy (USSE) [i.e., ≥1 megawatt (MW)] development requires large quantities of space and land; however, studies quantifying the effect of USSE on land cover change and protected areas are limited. We assessed siting impacts of >160 USSE installations by technology type [photovoltaic (PV) vs. concentrating solar power (CSP)], area (in square kilometers), and capacity (in MW) within the global solar hot spot of the state of California (United States). Additionally, we used the Carnegie Energy and Environmental Compatibility model, a multiple criteria model, to quantify each installation according to environmental and technical compatibility. Last, we evaluated installations according to their proximity to protected areas, including inventoried roadless areas, endangered and threatened species habitat, and federally protected areas. We found the plurality of USSE (6,995 MW) in California is sited in shrublands and scrublands, comprising 375 km2 of land cover change. Twenty-eight percent of USSE installations are located in croplands and pastures, comprising 155 km2 of change. Less than 15% of USSE installations are sited in “Compatible” areas. The majority of “Incompatible” USSE power plants are sited far from existing transmission infrastructure, and all USSE installations average at most 7 and 5 km from protected areas, for PV and CSP, respectively. Where energy, food, and conservation goals intersect, environmental compatibility can be achieved when resource opportunities, constraints, and trade-offs are integrated into siting decisions.
Located in Resources / Climate Science Documents
Species and Habitat Vulnerability Assessments of Appalachian Species and Habitats
Future climate change adaptation and mitigation strategies will be dependent on the best available projections of how the regional climate will change and on estimates of the impacts those changes will have on the region’s natural and cultural resources. Thus understanding the vulnerability of various species and habitats within the Appalachian LCC to climate change is of critical importance.
Located in Research
Project Species and Habitat Vulnerability Assessments of Appalachian Species and Habitats
Future climate change adaptation and mitigation strategies will be dependent on the best available projections of how the regional climate will change and the impacts those changes will have on the region’s natural and cultural resources. Understanding the vulnerability of various species and habitats to climate change within the Appalachian LCC is of critical importance for making effective conservation decisions. The AppLCC funded a Climate Change Vulnerability Assessment research project that addresses several factors: 1) how the Cooperative should acquire information about the climate vulnerability of Appalachian species and habitats to develop vulnerability assessments for a suite of key species and habitats to share with partners; 2) compilation of known vulnerability assessments of species and habitats, and 3) new climate change vulnerability assessments of selected species and habitats in the AppLCC region.
Located in Research
File PDF document Temporal dynamics of a commensal network of cavity-nesting vertebrates: increased diversity during an insect outbreak
Network analysis offers insight into the structure and function of ecological communities, but little is known about how empirical networks change over time during perturbations. ‘‘Nest webs’’ are commensal networks that link secondary cavity-nesting vertebrates (e.g., bluebirds, ducks, and squirrels, which depend on tree cavities for nesting) with the excavators (e.g., woodpeckers) that produce cavities. In central British Columbia, Canada, Northern Flicker (Colaptes auratus) is considered a keystone excavator, providing most cavities for secondary cavity-nesters. However, roles of species in the network, and overall network architecture, are expected to vary with population fluctuations. Many excavator species increased in abundance in association with a pulse of food (adult and larval beetles) during an outbreak of mountain pine beetle (Dendroctonus ponderosae), which peaked in 2003–2004. We studied nest-web dynamics from 1998 to 2011 to determine how network architecture changed during this resource pulse.Cavity availability increased at the onset of the beetle outbreak and peaked in 2005. During and after the outbreak, secondary cavity-nesters increased their use of cavities made by five species of beetle-eating excavators, and decreased their use of flicker cavities. We found low link turnover, with 74% of links conserved from year to year. Nevertheless, the network increased in evenness and diversity of interactions, and declined slightly in nestedness and niche overlap. These patterns remained evident seven years after the beetle outbreak, suggesting a legacy effect. In contrast to previous snapshot studies of nest webs, our dynamic approach reveals how the role of each cavity producer, and thus quantitative network architecture, can vary over time. The increase in interaction diversity with the beetle outbreak adds to growing evidence that insect outbreaks can increase components of biodiversity in forest ecosystems at various temporal scales. The observed changes in (quantitative) network architecture contrast with the relatively stable (qualitative) architecture of empirical mutualistic networks that have been studied to date. However, they are consistent with recent theory on the importance of population fluctuations in driving network architecture. Our results support the view that models should allow for the possibility of rewiring (species switching partners) to avoid overestimation of secondary extinction risk.
Located in Resources / Climate Science Documents
File The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate
Plant biodiversity is often correlated with ecosystem functioning in terrestrial ecosystems. However, we know little about the relative and combined effects of above- and belowground biodiversity on multiple ecosystem functions (for example, ecosystem multifunctionality, EMF) or how climate might mediate those relationships. Here we tease apart the effects of biotic and abiotic factors, both above- and belowground, on EMF on the Tibetan Plateau, China. We found that a suite of biotic and abiotic variables account for up to 86% of the variation in EMF, with the combined effects of above- and belowground biodiversity accounting for 45% of the variation in EMF. Our results have two important implications: first, including belowground biodiversity in models can improve the ability to explain and predict EMF. Second, regional-scale variation in climate, and perhaps climate change, can determine, or at least modify, the effects of biodiversity on EMF in natural ecosystems.
Located in Resources / Climate Science Documents
The Planning for Growth and Open Space Conservation Webinar Series
Session #10: Conservation Planning Tools for Land Use Planners and Natural Resource Professionals
Located in News & Events / Events