Designing Sustainable Landscapes in the Northeast A project of the North Atlantic Landscape Conservation Cooperative & Northeast Climate Science Center

Landscape Conservation Design October 31, 2014

Conservation Design Scenarios

 Ecosystem approach... based solely on ecosystem conditions

 Species approach... based solely on focal species considerations

 Combined ecosystem-species approach... based on the complement of ecosystems and focal species

Conservation Design Components

- Cores areas... areas of (persistent) high ecological integrity or species landscape capability
- Connectors... areas important to the connectivity of the core areas
- Restoration & management opportunities... areas with high restoration or management potential
- Conservation overlays... areas with high conservation value for other special reasons

Illustrated below for the species scenario

- Cores areas... areas of (persistent) high ecological integrity or species landscape capability
 - Ecological integrity ... gradients of integrity
 - Species landscape capability... gradients of landscape capability
 - Vulnerability... gradients in vulnerability to loss of local connectivity due to development
 - Core area prioritization... core area importance to regional connectivity
 - Core area composition... ecological systems and species' landscape capability

Methods (key decisions)

- Terrestrial cores:
 - Ecosystem-based: ✓ Weighted selection index ✓ Tier 1 floodplains, but not rare communities ✓ CTR scale* ✓ Fewer/larger cores ✓ Min ~10 acres ✓ 25% of landscape
- Species-based:
 ✓ Weighted species targets
 ✓ No rare species
 ✓ CTR scale
 ✓ Fewer/larger cores
 ✓ 25% of landscape

*Still undecided as to the best scaling/weighting scheme to use

Ecological integrity gradients

Species tiers

Vulnerability to development

- Relative probability of developing:
 - A cell with high local conductance <u>within</u> a core

Vulnerability to development

Terrestrial core area prioritization

- Relative importance of each core to the regional connectivity of the core area network
 - Based on the network Probability of Connectivity (PC) metric (Saura and Pascual-Hortal 2007)

Terrestrial core area prioritization

A CY CHNYL CH CHARTER AND SALAN SKALLY		/////X
Terrestrial Cores Areas 🄁		29
Cores #72		
Landcover		LAN)
Cores	M TOSTATION AND A MARK	
		%
	Macrogroup	selindex
	Northern Peatland & Fens	22%
	Northeastern Floodplain Forest	12%
	Wet Meadow / Shrub Marsh	8%
	Boreal Upland Forest	6%
64	Northern Hardwood & Conifer	4%
	Outcrop & Summit Scrub	4%
0 2.25 4.5 9 Kilometers	Cliff & Talus	4%
15	Northern Swamp	4%

Methods (key decisions)

Aquatic cores:

- <u>Ecosystem-based</u>: ✓ Unweighted selection
 - index
 - \checkmark CTR scale
 - Fewer/larger cores (networks) *
 - ✓ Min 1 river km
 - ✓25% of aquascape

 Species-based:
 ✓ Brook trout (headwaters)
 ✓ 5 anadromous fish (rivers) + free-flowing segments
 ✓ 25% of aquascape

*Still working on improvements to the ecosystem-based algorithm

- Headwaters:
 - Brook trout prob(occu)>0.86
- Rivers:
 - Distribution of:
 - o American shad
 - o blueback herring
 - o short-nose
 - o Sturgeon
 - o alewife
 - o sea lamprey

Ecological integrity/brook trout gradients

Ecological integrity/anadromous gradients

Aquatic core area zone of influence

 Constrained watershed buffer around the core representing a zone of influence

Aquatic core area composition

Aquatic core area composition

Aquatic Cores Areas Aquatic classes

Cores

- -Headwater cold high
- Headwater cold moderate
- Headwater cold low
- —Headwater cool high
- -Headwater cool moderate
- Headwater cool low
- -Headwater warm high
- Headwater warm moderate
- Headwater warm low
- Small cold low
- Small cool moderate
- Small cool low
- Medium cold
- Medium cool
- -Medium warm
- Large cool
- **——**Large warm
 - Lake/pond

0.75 1.5

0

3 Kilometers

- Connectors... areas important to the connectivity of <u>terrestrial</u> core areas
 - Conductance... gradients of regional conductance
 - Irreplaceability... gradients of irreplaceable pathways
 - Vulnerability... gradients in vulnerability to loss of regional conductance due to development
 - Linkage prioritization... linkage importance to regional connectivity

Connectors Conductance

 Relative probability of flow through a cell (function of local resistance, node size, quality and proximity)

Conductance

Connectors Irreplaceability

 Relative concentration of paths through a cell (function of local resistance and path irreplaceability)

Irreplaceability

Vulnerability to development

 Relative probability of developing an irreplaceable cell that has a high relative probability of use

Vulnerability to development

Linkage prioritization

 Based on each link's contribution to the Probability of Connectivity (PC) of the network

Based on the network Probability of Connectivity (PC) metric (Saura and Pascual-Hortal 2007)

Linkage prioritization

- Restoration & management opportunities...
 areas with high restoration or management potential
 - **Dam removal...** gradients in potential to improve aquatic connectivity
 - **Culvert upgrades...** gradients in potential to improve aquatic connectivity
 - Terrestrial road passage structures... gradients in potential to improve terrestrial connectivity
 - Management priorities... areas with management needs/opportunities to maintain or improve ecological integrity or species landscape capability

Dam removal

 Based on improvement in local aquatic connectedness resulting from removal of the dam (Δaqconnect)

Culvert upgrade

 Based on improvement in local aquatic connectedness resulting from replacing culvert with bridge (Δaqconnect)

Culvert Upgrade Priorities

- Low
- Medium-low
- Medium
- Medium-high
- 🔴 High

27,371 crossings

Terrestrial road passage structure

 Based on improvement in local connectedness resulting from installing a terrestrial road passage structure (Δconnect)

Management priorities

Conservation Overlays

- Conservation overlays... areas with high conservation value for other reasons
 - Rare communities... places important for rare natural communities
 - **Rare species...** places important for rare species
 - Others... (active river area?)

Conservation Overlays

Rare species

		Realized %LC					
Species	Full target	Ecosystem	Species	Combo			
Blackpoll Warbler	85%	78%	52%	56%			
Wood Turtle	80%	22%	48%	48%			
American Woodcock	73%	32%	44%	44%			
Eastern Meadowlark	73%	2%	44%	44%			
Blackburnian Warbler	63%	37%	39%	39%			
Louisiana Waterthrush	63%	29%	38%	38%			
Marsh Wren	63%	39%	40%	49%			
Moose	55%	37%	35%	36%			
Northern Waterthrush	55%	43%	39%	47%			
Wood Thrush	55%	37%	33%	34%			
Prairie Warbler	50%	27%	44%	44%			
Wood Duck	50%	37%	34%	39%			
Ruffed Grouse	45%	35%	34%	35%			
Black Bear	40%	32%	30%	32%			
Av	verage 61%	35%	40%	42 %			

					%CTR	TR selindex in		
	CTD area -	%CTR area in Cores			Cores			
Macrogroup	(ha)	Eco Sp	oecies Co	ombo	Eco Sp	ecies C	ombo	
Northern Hardwood & Conifer	1,749,969	27	27	27	39	32	36	
Boreal Upland Forest	168,630	45	38	46	54	40	51	
Central Oak-Pine	145,586	43	23	40	51	24	45	
Pasture/hay	135,518	2	25	25	100	43	100	
Outcrop & Summit Scrub	21,155	50	33	38	60	35	46	
Cliff & Talus	16,505	36	17	26	46	20	34	
Ruderal Shrubland & Grassland	10,205	18	22	21	27	25	26	
Glade & Barren & Savanna	680	53	30	40	63	32	48	
Alpine	553	26	46	7	32	49	10	
Northern Swamp	80,673	25	28	33	37	31	40	
Wet Meadow / Shrub Marsh	20,960	30	37	41	35	39	45	
Emergent Marsh	10,267	34	29	40	41	30	44	
Central Hardwood Swamp	4,800	27	24	42	42	25	56	
Northern Peatland & Fens	3,044	45	38	45	53	40	50	
Ruderal Shrub Swamp	505	16	26	29	27	28	36	
Northeastern Floodplain Forest	469	42	48	58	51	50	65	
Lotic	85,992	22	27	28	30	32	34	
Lentic	51,924	18	7	10	26	7	12	
FreshwaterTidal Riverine	2,852	44	7	25	51	6	28	

		-	Core dist (km)			%CTR o	list in (Cores	%CTR selindex in Cores			
	Macrogroup	CTR dist (km)	Есо	Species	Combo		Eco Sj	pecies	Combo	Eco	Species	Combo
	Stream (headwater) cold high	13,515	4,154	4,578	3,375		31	34	25	45	43	37
33	Stream (headwater) cold moderate	3,339	786	750	602		24	22	18	37	29	28
	Stream (headwater) cold low	1,144	222	183	189		19	16	16	30	21	24
	Stream (headwater) cool high	842	154	74	110		18	9	13	29	12	21
	Stream (headwater) cool moderate	702	112	33	77		16	5	11	24	6	16
	Stream (headwater) cool low	947	129	38	94		14	4	10	21	5	14
-	Stream (headwater) warm high	50	7	2	6		15	3	13	23	4	20
	Stream (headwater) warm moderate	39	4	1	3		11	3	9	18	3	13
	Stream (headwater) warm low	83	13	7	14		16	8	17	27	11	24
	Stream (small) cold moderate	464	217	8	192		47	2	41	72	2	66
	Stream (small) cold low	179	69	0	57		39	0	32	62	0	53
	Stream (small) cool moderate	381	181	60	196		47	16	51	72	8	65
	Stream (small) cool low	270	101	84	151		38	31	56	61	18	61
	Stream (medium) cold	104	57	-	53		55	0	51	80	0	77
S.	Stream (medium) cool	405	184	155	247		45	38	61	71	43	79
	Stream (medium) warm	120	51	82	104		43	69	87	70	57	89
3	Stream (large) cool	392	214	239	378		55	61	96	78	42	97
	Stream (large) warm	21	12	16	16		56	75	76	83	90	91
	FreshwaterTidal Riverine	132	51	96	111		38	73	84	64	72	91

 Resolve scaling issue
 Incorporate future landscape change
 Determine most effective way to describe/present results

