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Abstract

Field observations and time series of vegetation greenness data from satellites provide evidence of changes in terres-

trial vegetation activity over the past decades for several regions in the world. Changes in vegetation greenness over

time may consist of an alternating sequence of greening and/or browning periods. This study examined this effect

using detection of trend changes in normalized difference vegetation index (NDVI) satellite data between 1982 and

2008. Time series of 648 fortnightly images were analyzed using a trend breaks analysis (BFAST) procedure. Both

abrupt and gradual changes were detected in large parts of the world, especially in (semi-arid) shrubland and grass-

land biomes where abrupt greening was often followed by gradual browning. Many abrupt changes were found

around large-scale natural influences like the Mt Pinatubo eruption in 1991 and the strong 1997/98 El Niño event.

The net global figure – considered over the full length of the time series – showed greening since the 1980s. This is in

line with previous studies, but the change rates for individual short-term segments were found to be up to five times

higher. Temporal analysis indicated that the area with browning trends increased over time while the area with

greening trends decreased. The Southern Hemisphere showed the strongest evidence of browning. Here, periods of

gradual browning were generally longer than periods of gradual greening. Net greening was detected in all biomes,

most conspicuously in croplands and least conspicuously in needleleaf forests. For 15% of the global land area, trends

were found to change between greening and browning within the analysis period. This demonstrates the importance

of accounting for trend changes when analyzing long-term NDVI time series.
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Introduction

Over the last few decades of the 20th century, terrestrial

ecosystems acted as net carbon sink, as evidenced by

ecosystem process models and satellite vegetation data

(Myneni et al., 1997; Schimel et al., 2001; Zhou et al.,

2001). The easing of climatic constraints on plant

growth as a result of increased CO2 concentrations and

higher temperatures is a likely explanation for this

effect (Nemani et al., 2003). Indications for increased

biological activity were found in the Northern Hemi-

sphere between 35° and 75° latitude (Zhou et al., 2001;

Slayback et al., 2003) and in several hot spot regions,

including the Sahel (Olsson et al., 2005; Fensholt et al.,

2009) and parts of Australia (Donohue et al., 2009). On

the other hand, many forested biomes experienced a

decline in biological activity (De Jong et al., 2011a) and

especially large parts of the boreal forests showed

evidence of this, likely driven by late summer drought

(Goetz et al., 2005). Since instrument measurements

began, record high global mean temperatures were

reached in the past decade (Hansen et al., 2010). This

was found to induce a drying trend and a productivity

decline in large parts of the Southern Hemisphere (SH),

which counterbalanced the Northern Hemisphere (NH)

green-up and resulted in a net global reduction in pro-

ductivity (Zhao & Running, 2010). These findings may

indicate a major change in the global greening regime.

However, such trends may not be significant at large

temporal extents and productivity estimates are often

highly uncertain (Samanta et al., 2011). For this reason,

there is a need to better understand the temporal and

spatial dynamics of ecosystem productivity (Sjöström

et al., 2011). The focus regarding such environmental

changes is shifting toward increasingly large spatial

and temporal extents (Niemi & Mcdonald, 2004; Pettor-

elli et al., 2005; Verbesselt et al., 2010a). As a result,

long-term trends (i.e. time scales of decades) are becom-

ing more likely to be composed of more extreme
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shorter-term changes (i.e. several years), which might

balance themselves out. An analysis of this effect at glo-

bal scale is presented in this article.

A common way to derive indicators on environmen-

tal change is the use of spectral vegetation indices (Pet-

torelli et al., 2005). Such indices, based on the red/near

infrared spectral region, are indicative of chlorophyll

abundance and as such correlate to vegetation amount

and photosynthetic capacity (Myneni et al., 1995). Posi-

tive and negative changes in time can be referred to as

greening and browning, respectively. Here, time series of

satellite data are particularly valuable because they pro-

vide a monitoring system with repeatable vegetation

index (VI) measurements at scales at which climate-

and human-induced changes take place (e.g. Wessels

et al., 2007). Detecting changes within the time series is

the first step toward assessing their environmental

impact or attributing drivers or acting processes.

Changes within VI time series can be divided into three

major classes (Verbesselt et al., 2010a): seasonal

changes, gradual changes, and abrupt changes. The

first type occurs when the land surface phenology

changes, e.g. driven by temperature or rainfall, without

necessarily affecting the underlying trend component.

For example, earlier onset of greening in spring might

be counterbalanced by lower productivity late summer

(Angert et al., 2005). The gradual and abrupt changes

refer to the trend component beyond the seasonal varia-

tion. Slowly acting environmental processes, including

climate change, certain land management practices or

land degradation, may cause gradual changes in the time

series. Over time, these gradual changes may stall or

reverse (Scheffer et al., 2001; Zhao & Running, 2010),

which involves a trend break. Following Verbesselt

et al. (2010a), we define such an event, together with

the associated magnitude and/or change in direction,

as an abrupt change. Abrupt changes can also be

induced by land use changes (Turner et al., 2007), wild-

fires (Kasischke et al., 1993; Boles & Verbyla, 2000),

floods (Domenikiotis et al., 2003) or other fast-acting

processes (Potter et al., 2003). This study focused on

these abrupt and gradual VI changes.

Previous regional and global studies showed trends

in vegetation activity using VI time series from space-

borne sensors like the American Advanced Very High

Resolution Radiometer (AVHRR) and Moderate Reso-

lution Imaging Spectrometer (MODIS) or the French

VEGETATION sensor onboard Satellite Pour l’Observa-

tion de la Terre (SPOT). The direction and rate of

change – together referred to as trend – have commonly

been determined by the slope of a linear regression

model in which the VI values or derived metrics

depend on time (e.g. Paruelo et al., 2004; Herrmann

et al., 2005; Olsson et al., 2005; Heumann et al., 2007; Bai

et al., 2008). As a next step, trend changes may be con-

sidered within the analysis for closer relation to the sys-

tem dynamics. In the case of trends in vegetation

productivity since the early 1980s, many areas in the

world are known or expected to show trend changes

(Schimel et al., 2001; Slayback et al., 2003; Angert et al.,

2005; Wang et al., 2011). For instance, trend changes

were found in the early 1990s in the Northern Hemi-

sphere (Slayback et al., 2003), possibly related to the

June 1991 Mount Pinatubo eruption, which depressed

incoming short-wave radiation and caused an anoma-

lous cooling (Stenchikov et al., 1998; Lucht et al., 2002).

Furthermore, the Northern Hemisphere greening seems

to have stalled or even reversed toward browning in

the last decade (Zhao & Running, 2010; Wang et al.,

2011). There is a critical need for a consistent global

assessment of trend changes within long-term vegeta-

tion time series. Here, we apply a data-driven change

detection approach that is capable of quantifying trend

changes without prior knowledge on location or timing.

Regions in the world where trend changes have

occurred are identified and net greening and browning

for the 1982–2008 period is derived from a sequence of

abrupt and gradual trend changes.

Methods

NDVI data

In an effort to monitor fluctuations in vegetation and under-

stand interactions with the environment, the National Oceanic

and atmospheric administration (NOAA) has been collecting

images of vegetation condition using advanced very high res-

olution radiometer (AVHRR) sensors. The nonlinear combina-

tion of red and near infrared (NIR) spectral radiance

(NIR � RED)/(NIR + RED), known as normalized difference

vegetation index (NDVI), exhibits a strong relationship with

green biomass and is commonly used for vegetation assess-

ments from space (Tucker, 1979). For vegetated areas, infrared

reflectance is higher than red reflectance and therefore NDVI

ranges between 0 and 1 by definition.

The NOAA AVHRR sensors provide the longest available

run of NDVI data, including the Global Inventory for Map-

ping and Modeling Studies (GIMMS) which was used in this

study (Tucker et al., 2004). The data spans from 1981 through

2008 and has a temporal resolution of 2 weeks and a spatial

resolution of 0.072 degrees (~8 km). Errors in NDVI intro-

duced from orbital drift were largely (~90%) eliminated in the

most recent GIMMS version (Tucker et al., 2005). The transi-

tions between platforms may cause some discontinuities in

the data (De Beurs & Henebry, 2005), but these are expected

not to affect trend slopes (i.e. gradual changes) in the vegeta-

tion index (Kaufmann et al., 2000). A maximum value compos-

iting (MVC) technique (Holben, 1986) was used to minimize

cloud contamination during GIMMS processing and the risk

of detecting trend changes caused by persistent cloud cover
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was further reduced by the configuration of the trend break

algorithm (see Methods section). Image acquisition started in

July 1981, but we excluded 1981 to use only full 1-year periods

in the analysis. In this way, the 27 year time series (1982–2008)

for each pixel consists of 648 NDVI measurements with a fre-

quency of 24 scenes per year.

The NDVI values lower than 0.2 are sparsely vegetated or

not vegetated at all (Carlson & Ripley, 1997; Sobrino et al.,

2001), but to include sparsely vegetated areas in the analysis

we masked pixels with yearly mean values below 0.1. The

resulting dataset consists of 2,256,962 unmasked pixels (~86%
of all terrestrial pixels excluding Antarctica). The NDVI signal

in tropical evergreen forests is likely to saturate, causing low

signal to noise ratios (Huete et al., 1997). These regions were

not omitted from the analysis, because abrupt changes might

well be detectable. However, results for these regions were

interpreted with caution.

Land cover classification

Detected vegetation changes were summarized per land

cover class – which is also referred to as biome – because

each might respond differently to climate change and to land

use change (Chapin et al., 2000; Verburg et al., 2011). In the

International Geosphere and Biosphere Programme (IGBP), a

1-km AVHRR-based land cover product (DISCover) intended

for remote sensing of global change was developed (Love-

land et al., 2000). The dataset consists of 17 general land

cover types, based on the climate-independent vegetation

classification logic of Running et al. (1994), but extended to

provide, where possible, land use implications and to repre-

sent landscape mosaics. For definitions of each category the

reader is referred to Appendix 1 in Loveland & Belward

(1997) and to Loveland et al. (2000) for an elaborated descrip-

tion of the dataset and comparison with other land cover

datasets. The classification scheme, among few others, was

later adopted within the (MODIS) land cover products.

These products provide yearly land cover maps at 500 m

spatial resolution. In this study, the MOD12C1 product

(2009) was used, as it provides land cover at an aggregated

0.05 degree spatial resolution, which closely approaches the

GIMMS spatial resolution. The original dataset was resam-

pled using a majority method, which best preserves the spa-

tial structure of major land cover classes at the cost of minor

classes (Dendoncker et al., 2008; Verburg et al., 2011). For this

reason, the class ‘urban and built-up’ had few pixels and

was omitted from the summary statistics. The classes ‘snow/

ice’, ‘barren’ and ‘water bodies’ are not represented in the

analysis due to the masking procedure described in the

NDVI data section.

Detecting trend changes within time series

Depending on biome, NDVI time series may contain a strong

seasonal component linked with the growing seasons of vege-

tation being monitored. Most existing change detection tech-

niques are unable to account for seasonal variation and

analyze time series by aggregating the measurements by sea-

son or calendar year or they compare specific periods between

years (Coppin et al., 2004). A more generic change detection

method was proposed by Verbesselt et al. (2010a,b). This

method for detecting Breaks For Additive Seasonal and Trend

(BFAST) accounts for seasonality and enables the detection of

trend change within the time series. The methods are available

in the BFAST package for R (R Development Core Team, 2011)

from CRAN (http://cran.r-project.org/package=bfast). Here,

we explain the key concepts of BFAST and apply a modified

version. The full motivation for the procedure is given in

afore-mentioned publications, where also a validation is pro-

vided using both simulated time series and MODIS NDVI

data for Australian environments.

The basic principle of the BFAST algorithm is the combina-

tion of time series decomposition into seasonal, trend, and

remainder components with methods for detecting structural

changes in both the trend and seasonal components. In this

study we focused on breaks in the trend component. It was

assumed that nonlinearity can be approximated by a piece-

wise linear model and, as such, linearity was assumed in the

individual trend segments. An additive decomposition

approach was used to iteratively fit the piecewise linear

regression model and a seasonal model (Haywood & Randall,

2008). The general model is of the form:

Yt ¼ Tt þ St þ et : t 2 f1. . .ng ð1Þ

where, at time t in the time series {1 … n}, Yt is the observed

NDVI value, Tt is the trend component, St the seasonal compo-

nent en et the remainder component which contains the varia-

tion beyond what is explained by Tt and St.

The iteration is initialized with an estimate Ŝt of the sea-

sonal component using a nonparametric season-trend decom-

position (STL) method (Cleveland et al., 1990). Subsequently,

the estimates of St and Tt and their changes are determined by

iterating through the following steps until the number and

position of the detected breakpoints remain unchanged:

(step 1a) Test whether or not breakpoints occur in the season-

ally adjusted data (Yt–St), using the MOving SUM

(MOSUM) approach (Zeileis & Kleiber, 2005). If the

test indicates significant change (a = 0.05), the

breakpoints are estimated using the method of Bai

& Perron (2003), as implemented by Zeileis et al.

(2002). This method minimizes the Bayesian Infor-

mation Criterion (BIC) (Schwarz, 1978) to determine

the optimal number of breaks m and uses an itera-

tive procedure – minimizing the residual sum of

squares – to estimate the optimal break positions

and accompanying 95% confidence intervals. For

the MOSUM test to hold the nominal significance

level, the error terms after decomposition should

not be serially correlated.

(step 1b) The trend component T̂ for each segment is esti-

mated using robust linear regression (Venables &

Ripley, 2002). As such, the trend component is

described by a robust piecewise linear model, which

allows the trend to exhibit changes. The positions in

time of these trend changes are indicated by the

© 2011 Blackwell Publishing Ltd, Global Change Biology, 18, 642–655
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individual breakpoints, The trend within each seg-

ment j is assumed to be linear with intercept aj and
slope bj:

Tt ¼ aj þ bj � t : j 2 f1. . .mþ 1g ð2Þ

where m equals the number of abrupt trend changes

so that m+1 equals the number of segments.

(step 2) Detrended data (Yt – Tt) are used to refit the seasonal

term St using a harmonic model with three compo-

nents, i.e. periods of 12, 6, and 3 months.

(step 3) The number and position of breakpoints are com-

pared to the previous iteration and the fitting proce-

dure is finalized if they remain unchanged.

The BFAST can be generically applied to VI time series

independent of the land cover type, reference periods or spe-

cific change trajectory. The only parameterization required is

the maximum number of breakpoints mmax or the minimum

time between breakpoints. The minimum time between break-

points needs to coincide with the typical length scale of the

monitored processes. In line with Verbesselt et al. (2010a) and

following the recommendations of Bai & Perron (2003), we

used a minimum of 4 years (corresponding to ~15% of the

27 year data span) between successive breakpoints. In case of

several changes within a 4 year segment, only the most statis-

tically significant is detected. This configuration also reduced

the effect of persistently clouded areas, as clouds were found

to be captured by the remainder component (et). For illustra-

tion, Figure 1 shows the decomposition and breakpoint detec-

tion for a GIMMS pixel in China. The trend component (Tt)

consists of four segments with gradual changes, separated by

three breakpoints at which abrupt changes were detected. For

comparison, the Tt panel also shows the linear model for the

entire time series, together with the slope coefficient and the

corresponding significance value (P). The latter is based on

generalized least squares (GLS) to account for remaining

short-lag serial autocorrelation.

Analysis of NDVI changes

The BFAST procedure was extended to analyze the signifi-

cance of the detected slopes in Tt against the null hypothe-

sis that slope bj = 0 at a = 0.05 (degrees of freedom equals

the number of observations in the segment minus 2). Only

significant slopes were adopted as indicators for greening

(bj > 0) or browning (bj < 0). Subsequently, the duration of

the significant greening and browning segments and the

magnitude of change in NDVI were calculated. The first is

the sum of length of individual segments with significant

slopes and the latter is a combination of gradual magni-

tude within segments and abrupt magnitude at the break-

points between consecutive segments. Results were

summarized at global, hemisphere, and biome scales.

Abrupt changes shortly after the Mt Pinatubo eruption

(Jun 1991–Dec 1992) were extracted to map possible effects

of this eruption on NDVI trends. All described analyses

Fig. 1 Example of decomposition and trend break analysis for a location in China (35.913ºN, 108.513ºE). The top panel shows the global

inventory for mapping and modeling studies normalized difference vegetation index (NDVI) data (Yt), whereas the other three panels

depict the individual components after decomposition. The seasonal (St) and remainder (et) components have zero mean while the

trend component (Tt) shows the trend in NDVI: a period of browning between 1982 and 1986 and a period of greening between 1994

and 1998. The slope coefficients (b) of the other two segments are not significant (P > 0.05). The blue dashed line shows the equivalent

linear model for the full time series.
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were performed using R statistical software (R Develop-

ment Core Team, 2011) on a high performance computing

facility.

Results

Duration of gradual changes

Figure 2 illustrates the detected duration of both grad-

ual greening and gradual browning, without showing

the associated slope or absolute changes in NDVI val-

ues. The most conspicuous region in terms of long

greening periods is the eastern part of Europe. Also

regions in North America, most tundra regions, the

savanna between the Sahara desert and the equator,

and parts of India exhibited a greening trend for

20 years or longer. Most of these areas are in the North-

ern Hemisphere while long browning periods were

mainly found in the Southern Hemisphere, conspicu-

ously in parts of Argentina and Australia. In the

Fig. 2 Duration of change by means of number of years in which a significant normalized difference vegetation index trend was found

(a = 0.05). (a) positive trend, or greening and (b) negative trend, or browning. White areas were masked out (see sections Data and

Methods) or showed insignificant trends.
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646 R. DE JONG et al.



Northern Hemisphere, on the other hand, browning

was mainly found in the Kazakh steppe and in the bor-

eal forests in parts of Siberia, Alaska, and Canada.

A distinct difference was found between both hemi-

spheres regarding the duration of greening and brown-

ing. Gradual greening trends lasted longer than

equivalent browning trends in all biomes in the North-

ern Hemisphere, whereas the opposite holds for most

biomes in the Southern Hemisphere (Table 1). The glo-

bal figure is mainly determined by the Northern Hemi-

sphere – due to the north-heavy arrangements of the

continents – and therefore greening trends lasted longer

in all biomes, although most conspicuously in mixed

forests, croplands, and cropland/vegetation mosaics.

The longest gradual browning trends were found in

grasslands. On average, the detected duration of grad-

ual changes varied roughly between 3 and 6 years for

NH browning and between 9 and 14 years for NH

greening. The SH durations varied between 7 and

9 years for greening and between 7 and 12 years for

browning.

Trend breaks

Following the described approach, large parts of the

global surface experienced NDVI trend changes during

the 1982–2008 period. From the unmasked area, 32.9%

shows zero, 27.2% one, 22.7% two, and 17.2% more

trend changes. Most of these were detected in Austra-

lia, Argentina, south-west Texas (USA)/north-east

Mexico, Botswana, and western South Africa (Fig. 3).

The higher northern latitudes and the tropics seem least

affected by trend discontinuities, although some were

detected in the North American boreal forests. For the

better part, the detected breakpoints separate segments

with significant slopes from segments with insignificant

slopes. However, for 14.5% of the total land surface the

slope coefficient swapped sign, which indicates that

both a period of significant greening and a period of

significant browning occurred at the same location

between 1982 and 2008. Many of these shifts between

greening and browning were found not only in semi-

arid climate regions, but also in temperate climate

regions in Europe and North America. The majority of

this area corresponded to open and closed shrubland,

whereas grassland takes a second place.

Magnitude of NDVI changes

Global greening and browning patterns were divided

into gradual and abrupt changes in NDVI and are

shown in Figure 4a, b. Gradual changes – which are

calculated from the detected duration of change and

the corresponding slope coefficients – are shown in

green and brown colors, respectively, and abrupt

changes at breakpoints are, partially transparent,

shown in blue. The magnitude of each of these compo-

nents varies between 0 and ~0.15 (absolute NDVI

units). Greening was found in many parts of the world

and most conspicuously in the Northern Hemisphere,

which is in line with the longer change trajectories of

greening found there (Table 1). Abrupt greening was

mainly found in areas with relatively sparse vegetation

cover (e.g. Australian rangelands, African open shrub-

Table 1 Total duration of gradual normalized difference vegetation index change in years. Lengths of individual significant seg-

ments were summed and averaged over all pixels within the land cover class for the Northern Hemisphere, the Southern Hemi-

sphere and globally. Land cover classes (number and name) are according to the International Geosphere and Biosphere

Programme classification (Loveland et al., 2000)

Land cover class/biome

Positive change (greening) Negative change (browning)

NH SH G NH SH G

1 Evergreen needleleaf forest 10.41 10.41 6.14 6.14

2 Evergreen broadleaf forest 9.51 9.48 9.51 5.24 7.34 5.05

3 Deciduous needleleaf forest 7.84 7.84 4.21 4.21

4 Deciduous broadleaf forest 13.08 6.56 11.10 4.25 9.76 6.00

5 Mixed forests 13.57 13.57 4.04 4.04

6 Closed shrublands 10.32 9.70 10.13 6.21 9.67 7.55

7 Open shrublands 11.93 7.58 10.75 2.93 12.44 5.43

8 Woody savannas 9.83 7.14 9.16 4.76 8.87 5.81

9 Savannas 14.98 9.18 10.34 3.92 7.54 6.83

10 Grasslands 10.77 7.59 10.18 7.85 10.55 8.34

11 Permanent wetlands 12.10 7.70 11.38 3.02 8.27 3.74

12 Croplands 13.49 8.10 12.86 5.09 10.23 5.66

14 Cropland/vegetation mosaic 13.31 8.68 12.60 4.46 6.70 4.78

© 2011 Blackwell Publishing Ltd, Global Change Biology, 18, 642–655

TREND CHANGES IN GLOBAL GREENING AND BROWNING 647



lands, and the Sahel region), mostly in combination

with gradual browning, whereas abrupt browning was

mainly detected in more densely vegetated regions (e.g.

broadleaf forest in Europe and North America) and in

humid grasslands. The sum of all significant change

components provides the net change in NDVI (Fig. 4c),

with magnitudes up to ~0.04 (absolute NDVI units).

Table 2 summarizes the detected changes in NDVI

per biome and hemisphere. At global scale, Net green-

ing is most conspicuous in cropland regions (net

change 0.034), followed by evergreen broadleaf and

mixed forests. In the Northern Hemisphere, savannas

show the strongest indication for greening (0.050). Net

greening was found in all biomes except for few minor

net browning changes in the Southern Hemisphere. In

general, the Northern Hemisphere shows less variation

(in terms of absolute greening and browning per

biome), but higher net NDVI changes compared to the

Southern Hemisphere. In the latter, the highest varia-

tion was detected in shrublands and grasslands (e.g.

parts of the Australian rangelands, Andean puna, and

Patagonian steppe/Monte semi-desert). The lowest var-

iation was found in needleleaf forest and open shrub-

lands in the Northern Hemisphere (e.g. boreal forest

and tundra).

The detected NDVI trends do not only vary in space,

but also in time. Figure 5 illustrates how gradual green-

ing and browning trends were found to evolve across

the time series by means of globally aggregated area

per fortnightly time-step (with respect to the first

4 years in which no trend changes occurred by defini-

tion). It appeared that the area which showed gradual

greening decreased to 83% (with respect to the start of

the time series) between 1986 and 2002, after which it

increased to 92%. The browning area quickly increased

to 118% in 1994, after which is decreased and stabilized

around 110%. The total land area which experienced

gradual changes was found to vary between 51% and

56% (blue line) with the minimum around the year

2000.

Discussion

The presented methodology, based on the BFAST algo-

rithm, enabled detection of short-term greening or

browning periods within a longer time series of satellite

data. This approach is, in this sense, more flexible than

previous global assessments of vegetation activity (Bai

et al., 2008; De Jong et al., 2011a). There is general

agreement with respect to the afore-mentioned global

assessments regarding the spatial pattern of net

changes in NDVI (Fig. 4c). However, the results

showed different spatial patterns for gradual and

abrupt NDVI changes (Fig. 4a, b) and indicated that

gradual trends generally last for periods shorter than

the full length of the time series (Fig. 2). The change

rates for these shorter periods were, by definition,

greater than those found using monotonic analysis and

resulted in higher absolute NDVI changes within the

1982–2008 time span (Table 2). Considered over all

Fig. 3 Number of detected abrupt changes, or breakpoints, irrespective of the magnitude of the changes. Areas with a yearly mean nor-

malized difference vegetation index < 0.10 were masked out.

© 2011 Blackwell Publishing Ltd, Global Change Biology, 18, 642–655

648 R. DE JONG et al.



Fig. 4 Global greening and browning in terms of normalized difference vegetation index changes between 1982 and 2008: (a) positive

changes, both gradual (green) and abrupt (blue); (b) negative changes, both gradual (red) and abrupt (blue); (c) sum of the four compo-

nents of figures a and b.
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pixels used in this study, greening rates were found to

be around 4–5 times greater with respect to monotonic

analysis with a fixed change duration of 26 years (Bai

et al., 2008). Browning rates were also greater, which is

mainly accountable to shrubland biomes. This indicates

that, especially in these regions, short-term greening

and browning effects are averaged out using monotonic

analysis. The latter was found to occur in approxi-

mately 15% of the global land area, which showed both

gradual browning and gradual greening trends

between 1982 and 2008. The net global figure of NDVI

change was positive for all land cover classes, but

slightly lower than estimated in mentioned monotonic

studies. A plausible explanation for this effect is that

monotonic methods are likely to overestimate changes

in periods which were considered stable in this study.

For example, in Figure 1 the entire time span was con-

sidered significant in case of the monotonic method

Table 2 Absolute changes in normalized difference vegetation index for the time span of the Global Inventory for Mapping and

Modeling Studies dataset (1982–2008), subdivided into abrupt and gradual changes for the Northern Hemisphere, the Southern

Hemisphere, and globally. For easier numerical representation, values were multiplied by 100. Land cover classes (number and

name) are according to the International Geosphere and Biosphere Programme classification (Loveland et al., 2000)

Land cover class/biome

Gradual change Abrupt change Net result

NH SH G NH SH G NH SH G

Greening

1 Evergreen needleleaf forest 5.80 5.92 2.91 2.91 0.68 0.81

2 Evergreen broadleaf forest 9.23 9.24 9.25 5.87 5.99 5.94 2.25 2.65 2.50

3 Deciduous needleleaf forest 3.10 3.10 1.18 1.18 0.81 0.82

4 Deciduous broadleaf forest 7.38 7.62 7.56 3.59 6.29 4.46 2.56 1.53

5 Mixed forests 5.89 6.05 2.58 2.58 2.45 2.61

6 Closed shrublands 7.74 12.10 9.60 6.61 11.97 8.75 2.02 0.28 1.42

7 Open shrublands 3.71 7.47 4.67 2.39 13.17 5.22 1.90 0.02 1.39

8 Woody savannas 5.09 9.08 6.13 2.79 6.25 3.67 1.39 0.44 1.16

9 Savannas 9.84 10.84 10.65 5.68 6.81 6.59 5.03 1.67 2.33

10 Grasslands 6.00 8.03 6.32 6.40 9.58 6.96 2.04 1.55

11 Permanent wetlands 4.39 7.94 4.77 2.68 5.68 3.05 2.34 0.43 2.07

12 Croplands 7.84 10.84 8.14 4.62 8.06 5.01 3.79 0.36 3.40

14 Cropland/vegetation Mosaic 7.09 7.23 7.10 3.73 4.66 3.85 2.87 1.08 2.62

Browning

1 Evergreen needleleaf forest �3.75 �3.74 �4.28 �4.28

2 Evergreen broadleaf forest �6.42 �6.55 �6.48 �6.43 �6.03 �6.21

3 Deciduous needleleaf forest �1.42 �1.42 �2.04 �2.04

4 Deciduous broadleaf forest �3.34 �8.36 �4.98 �5.08 �6.33 �5.51 �0.79

5 Mixed forests �2.53 �2.53 �3.49 �3.49

6 Closed shrublands �6.84 �14.69 �9.94 �5.50 �9.09 �6.99

7 Open shrublands �2.32 �14.79 �5.60 �1.88 �5.83 �2.90

8 Woody savannas �3.03 �7.56 �4.19 �3.47 �7.33 �4.46

9 Savannas �4.99 �7.48 �6.99 �5.50 �8.50 �7.91

10 Grasslands �6.49 �11.67 �7.41 �3.87 �6.52 �4.32 �0.58

11 Permanent wetlands �2.22 �7.20 �2.83 �2.52 �5.99 �2.92

12 Croplands �4.12 �10.41 �4.81 �4.55 �8.14 �4.93

14 Cropland/vegetation mosaic �3.59 �5.55 �3.85 �4.36 �5.25 �4.48

Fig. 5 Primary axis: area with positive gradual trends in nor-

malized difference vegetation index (greening) and negative

gradual trends (browning) over time. The area was indexed with

respect to the first 4 years (minimal segment length) of the time

series. Secondary axis: percentage of total land area with signifi-

cant greening or browning trend.
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(P = 0.004), while only ~9 out of 27 years were consid-

ered significant using the BFAST method.

Possible drivers of NDVI trends and trend changes

Terrestrial vegetation productivity is influenced by

many cyclical and abrupt events which might cause

trends in vegetation productivity to change (Gobron

et al., 2010). These events include not only climatic and

oceanic oscillations, of which the El Niño/La Niña –
Southern Oscillation (ENSO) with a period of 4–7 years

is the best known (Woodward et al., 2008), but also vol-

canic eruptions and anomalously warm and dry years

(e.g. the European drought of 2003: Ciais et al., 2005).

Aside from biophysical drivers, the observation record

might be contaminated with measurement errors origi-

nating from sensor changes, orbital drift of satellites or

atmospheric effects. Most measurement errors can be

well corrected for, but other drivers are likely to cause

actual changes in vegetation response in some biomes

or regions (e.g. volcanic eruptions and oceanic oscilla-

tions). Some of these effects are discussed herein.

The GIMMS dataset has been corrected for aerosols

injected into atmosphere by volcanic eruptions, i.e. the

El Chichon eruption in April 1982 and the Mount Pina-

tubo eruption in June 1991 (Slayback et al., 2003). Still,

discontinuities might result from actual vegetation

response to temporary global cooling. Effects of El Chi-

con are not likely to be found in the GIMMS data,

because the eruption date is close to the start of the

dataset and therefore the initial status is unknown.

After the Mt Pinatubo eruption, however, a higher rep-

resentation of breakpoints was found (De Jong et al.,

2011b) and cooling effects attributable to the eruption

have been reported around the world (Lucht et al.,

2002; Soden et al., 2002; Angert et al., 2004). This pro-

vides a candidate explanation for the high occurrence

of abrupt trend changes around this time. Figure 6

shows that abrupt changes in NDVI were detected in

many regions in the world between June 1991 and

December 1992. Browning was most conspicuous in

North America, Southern Africa, and Eastern Asia. This

corresponds with negative NDVI changes found in the

higher northern latitudes between 1991 and 1992 (Slay-

back et al., 2003). Two large regions showed positive

changes (abrupt greening): Kazakhstan and the states

of Western and South Australia. In Kazakhstan this

might be explained by a sharp decline in precipitation

in the years before the eruption (Pilifosova et al., 1997).

A weak El Niño event caused warming and higher pre-

cipitation in certain regions shortly after the eruption

date (Woodward et al., 2008). This might have counter-

balanced some Pinatubo effects and caused the abrupt

greening in Australia.

The Sahel experienced climatic extremes in terms of

drought. During the last 30 years of the 20th century,

nearly all years have been anomalously dry (Nicholson,

2000), which is likely related to the Atlantic multideca-

dal oscillations (AMO) (Zhang & Delworth, 2006). In

water-limited ecosystems like these, such rainfall trends

are expected to induce browning trends, possibly

amplified by a positive feedback due to increasing

Fig. 6 Magnitude of abrupt normalized difference vegetation index changes detected shortly after the Mt Pinatubo eruption (June 1991–

December 1992). Green colors indicate positive changes and brown colors negative changes.

© 2011 Blackwell Publishing Ltd, Global Change Biology, 18, 642–655

TREND CHANGES IN GLOBAL GREENING AND BROWNING 651



albedo (Zhang & Delworth, 2006). However, greening

trends were found in the Sahel, especially in the south-

ern parts. These trends are strongest in the 1980s and

were found to change into browning trends in the

northern Sahel. The net result for 1982–2008 showed

greening (Fig. 4c), which is probably the result of

recovery from the droughts which were most severe

around the start of the GIMMS dataset. It will be a com-

plex exercise to disentangle all sea-atmosphere-land

interactions which drive the gradual and abrupt

changes in vegetation productivity, but there seems to

be a general agreement that the Sahel vegetation is

heavily influenced by natural processes, more than by

men (Fensholt & Rasmussen, 2011). In these and other

shrubland biomes – especially in the Southern Hemi-

sphere – it was found that the greening changes are

generally abrupt, followed by gradual browning (Fig. 4

and Table 2, classes 6 and 7). Relatively wet years

might lead to extensive germination of short-lived

plants, which is followed by browning in successive

drier years. The total variation in NDVI is also highest

in these regions (together with grasslands) which is

likely explained by strong reactions to climatic fluctua-

tions like ENSO cycles. A large number of abrupt

changes were found in Australia – which is particularly

prone to ENSO fluctuations – around the strong 1997/

98 El Niño (Wolter & Timlin, 1998) and following La

Niña events. These fluctuations are much smaller in the

Northern Hemisphere figures for the same biomes,

owing to the stable tundra regions, which form – in the

IGBP DISCover classification – part of the (open) shrub-

lands and due to the reduced ENSO influences. Other

climatic oscillations which act at (sub-) decadal time

scale and which have larger effects in the Northern

Hemisphere include the Pacific Decadal Oscillation

(PDO) and the North Atlantic Oscillation (NAO). Both

have mainly been in positive phases during the GIMMS

time span, which lead to relatively high temperatures

in some regions (Viles & Goudie, 2003), but not likely

to trend breaks in NDVI.

Relatively long periods of browning were detected

in boreal forests in Canada and Siberia (Fig. 2). This

boreal browning is in line with results from previous

studies (Bunn et al., 2007), in which drought and,

accordingly, vapor pressure deficits (VPD) were docu-

mented as possible drivers. In North America, large

forested areas experienced a decline in productivity

without significant changes in growing season length,

indicating impacts of late summer drought (Zhang

et al., 2009; Goetz et al., 2011). This is in agreement with

several trend analyses performed on the GIMMS data-

set indicating that boreal browning is mainly attribut-

able to stress within the growing season, rather than to

changes in length of growing season (Goetz et al., 2005;

De Jong et al., 2011a) and supported by tree ring studies

(Lloyd & Bunn, 2007). Net NDVI increase was found

for all land cover classes, but Table 2 shows that the

lowest increases were found for needleleaf forest –
which is most abundant in the boreal regions. Arctic

coastal tundra ecosystems, on the other hand, mostly

show a stable greening trend which is likely related to

decreasing sea ice concentrations and associated higher

land surface temperatures (Goetz et al., 2011). Aside

from boreal regions, long periods of browning were

also found in Kazakhstan. These have been attributed

to drought conditions, at least toward the end of the

time series as negative precipitation trends were found

from both station observations and gridded precipita-

tion data (De Beurs et al., 2009). The same research

showed an increase in NDVI, using MODIS data from

2000–2008, in a study area in the European part of Rus-

sia, which is in accordance with the long-term greening

trends found in this study. These trends were attrib-

uted to land abandonment and an increase in agricul-

tural productivity (De Beurs et al., 2009). Agricultural

expansion plays an important role in Argentina as well

(Viglizzo et al., 2011), which is likely one of the drivers

of the negative NDVI trends found there. On the other

hand, the strongest indication for greening is also

found in cropland regions (Table 2), which is likely

attributable to improved agricultural techniques. Urban

expansion might have caused local NDVI decline

around several cities. In the global statistics this effect

is not captured as a result of the resampling scheme

used for the land cover data. For such purposes it is rec-

ommended to run the BFAST algorithm on MODIS (or

equivalent) data. This recommendation also holds for

other purposes where processes act beyond the spatial

resolution of GIMMS, for instance most deforestation

studies.

Many regions, other than those discussed above,

show significant NDVI trends and for most of these

regions ample studies relate the trends to possible driv-

ers. Few studies, however, assessed trends and drivers

at continental or larger scale. In the Northern Hemi-

sphere, greening patterns were found and related to

increasing temperature and precipitation (Zhou et al.,

2001), but recently trends in certain regions were also

found to have stalled or even inversed (Wang et al.,

2011). Globally, the terrestrial net primary productivity

(NPP) was found to have reduced during the past

decade, attributable to large-scale warming-associated

droughts in the Southern Hemisphere (Zhao & Run-

ning, 2010) and a likely soil moisture deficit (Jung et al.,

2010). This is in line with the browning patterns

(Table 2) and the increasing area with browning trends

(Fig. 5) found in this study, although the strongest

increase was found before 1994. The sharp increase in
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2004 might be partly explained by a decrease in vegeta-

tion productivity in Europe following the anomalous

warm year of 2003 (Ciais et al., 2005). Overall, the past

decade showed an increase in greening trends, but our

analysis period for trend changes was limited to 2005.

Limits and artifacts

The presented approach proved capable of detecting

trend changes in global NDVI time series, which

reduced the limitation of a commonly assumed fixed

change trajectory. Common trend analysis methods

may average out the temporal signal for time series

which consist of several different change periods.

Accordingly, areas might be labeled stable while in

reality changes might have occurred over periods of

several years or – the other way around – stable periods

are included in a significant long-term trend. The longer

a time series is, the more likely that this effect conceals

actual short-term trends, which might be more valuable

for establishing relationships with driving processes

than those for long-term trends. Information on green-

ing vs. browning sign changes, for instance, is crucial

for monitoring the effect of land management changes

or the influence of meteorological conditions on vegeta-

tion status. This information can be provided using the

presented approach, keeping in mind some constraints.

Several NOAA satellites have been used to generate

the GIMMS dataset. Although the data have been thor-

oughly corrected (Tucker et al., 2005), this potentially

causes trend breaks within the time series (Cracknell,

1997; De Beurs & Henebry, 2004). Table 3 lists the plat-

form changes and the corresponding dates. We ana-

lyzed the frequency distribution of the detected break

points, from which it appeared that few sensor changes

(between NOAA platforms 9, 11 and 14) coincide with

periods with a higher than average number of break-

points (De Jong et al., 2011b) but a causal relationship

could not be established. The likeliness of these transi-

tions influencing the timing of detected breaks is high-

est in low-latitude biomes, especially in case of sparse

vegetation cover and relatively light-colored soils, but

even then it is likely not to affect the detected trend

slopes (Kaufmann et al., 2000).

NDVI is a one dimensional measure with a multi-

dimensional biophysical origin, which – despite the

improved time series analysis techniques – urges cau-

tion in the interpretation of trends. Given that the data

are free of measurement errors, it still does not directly

measure the amount of standing biomass nor the vege-

tation productivity, but is also influenced by canopy

structure and soil parameters, among others (Baret &

Guyot, 1991; Myneni et al., 1995). It is therefore not

straightforward to relate NDVI changes to ecosystem

changes, which in itself are often multi-actor issues and

subject to change over time (Nelson et al., 2006).

Expressing productivity change in terms of Net Pri-

mary Productivity (NPP) – using empirical relation-

ships with NDVI or production efficiency models –
yields an indicator which is closer related to biophysi-

cal processes and better amenable to economic analysis.

The relationship between the two, however, is not

always strong and not over the entire range linear

(Paruelo et al., 1997), although a large part of interannu-

al variation in NPP (30% up to 90%, depending on

biome) can be explained by NDVI (Potter et al., 1999).

The application of trend break analysis of satellite

records in combination with production efficiency

models needs further investigation.

Conclusions

Temporal decomposition of trends in vegetation activ-

ity inferred from NDVI revealed an alternating pattern

of short-term greening and browning trends for large

parts of the terrestrial surface. For almost 15% of this

area, both periods with an increase and with a decrease

in vegetation activity were found between 1982 and

2008. The ENSO-prone shrubland and grassland

regions, mainly in the Southern Hemisphere, appeared

specifically prone to reversing trends. Many trend

changes were detected for certain regions after the

strong ENSO event of 1997/98 and globally after the

Mt Pinatubo eruption of June 1991.

Different spatial patterns were found for abrupt and

gradual changes. Abrupt greening prevailed in semi-

arid regions, probably due to their strong reactions to

climatic variations. These abrupt greening events were

often followed by periods of gradual browning. In gen-

eral, greening prevails in all land cover classes and as a

result the global figure indicates greening between 1982

and 2008. The strongest indication for this was found

in croplands and the weakest in needleleaf forests.

Table 3 Sensor changes within the time span of the Global

Inventory for Mapping and Modeling Studies dataset. Due to

malfunction of National Oceanic and atmospheric administra-

tion (NOAA)-11 and failure of NOAA-13 to achieve orbit,

NOAA-9 descending node data was used in the period Sep-

tember 20, 1994 until January 19, 1995 (Tucker et al., 2005)

AVHRR platforms Date

NOAA-7 > NOAA-9 Feb 10, 1985

NOAA-9 > NOAA-11 Nov 9, 1988

NOAA-11 > NOAA-9d Sep 20, 1994

NOAA-9d > NOAA-14 Jan 19, 1995

NOAA-14 > NOAA-16 Nov 1, 2000

NOAA-16 > NOAA-17 Jan 1, 2004
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Greening trends were also found to be weaker in the

Southern Hemisphere, compared to the Northern

Hemisphere. Globally, the area which experienced

gradual greening trends was found to decrease over

time, while browning increased. This might indicate an

overall reduction in global terrestrial vegetation activ-

ity, although an increasing trend was found in recent

years.

The results from this study show that linear trend

analysis over a time series of arbitrary length may

obscure significant trend changes appearing within

shorter duration, while particularly the latter can be

linked to large-scale drivers. As such, automatic detec-

tion of trend changes provides a new step in the analy-

sis of trends in global vegetation activity, specifically in

(semi-arid) shrub- and grassland biomes.
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