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Abstract

Vegetation forms a main component of the terrestrial biosphere and plays a crucial role in land-cover and climate-

related studies. Activity of vegetation systems is commonly quantified using remotely sensed vegetation indices (VI).

Extensive reports on temporal trends over the past decades in time series of such indices can be found in literature.

However, little remains known about the processes underlying these changes at large spatial scales. In this study, we

aimed at quantifying the spatial relationship between changes in potential climatic growth constraints (i.e. tempera-

ture, precipitation and incident solar radiation) and changes in vegetation activity (1982–2008). We demonstrate an

additive spatial model with 0.5° resolution, consisting of a regression component representing climate-associated

effects and a spatially correlated field representing the combined influence of other factors, including land-use change.

Little over 50% of the spatial variance could be attributed to changes in climatologies; conspicuously, many greening

trends and browning hotspots in Argentina and Australia. The nonassociated model component may contain large-

scale human interventions, feedback mechanisms or natural effects, which were not captured by the climatologies.

Browning hotspots in this component were especially found in subequatorial Africa. On the scale of land-cover types,

strongest relationships between climatologies and vegetation activity were found in forests, including indications for

browning under warming conditions (analogous to the divergence issue discussed in dendroclimatology).
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Introduction

Vegetation is the main component of the terrestrial bio-

sphere, and remotely sensed VI are commonly used in

climate-change studies as a proxy for vegetation cover

and photosynthetic capacity (Myneni et al., 1995).

Changes in vegetation activity – as we use to refer to

changes in vegetation index, following Zhou et al. (2001)

– form a complex system of biotic and abiotic interac-

tions, which differ between land-cover classes and may

evolve over time themselves (Nelson et al., 2006). Today,

VI time series are available at large spatial extents and

dense time intervals. As a consequence, studying the

available satellite imagery at global scale involves the

analysis of large quantities of data. This has commonly

been targeted with per-pixel approaches. For example,

temporal VI changes have been quantified using para-

metric linear models on data aggregated on a yearly

basis (Bai et al., 2008), on a seasonal basis (Eklundh &

Olsson, 2003), nonparametric models on the full time

series (Pouliot et al., 2009) or seasonal-trend decomposi-

tion algorithms (De Jong et al., 2012). General patterns

of detected changes coincide with increasing vegetation

activity over time (greening) in many areas of the world,

conspicuously in Europe (St€ockli & Vidale, 2004; Julien

et al., 2006), the Sahel (Eklundh & Olsson, 2003; Any-

amba & Tucker, 2005; Herrmann et al., 2005; Hickler

et al., 2005; Olsson et al., 2005), India (Jeyaseelan et al.,

2007) and the Northern Hemisphere in general (Tucker

et al., 2001; Zhou et al., 2001; Slayback et al., 2003).

Decreases (browning), on the other hand, have been

identified in parts of the Southern Hemisphere (e.g.

South America), but also in boreal forests (De Jong et al.,

2012). These results illustrate the temporal change in

vegetation activity over the past decades, but leave rela-

tionships with underlying processes open. Relation-

ships with climate, including oceanic oscillations

(Woodward et al., 2008), can be anticipated and have

been substantiated by various modelling (Nemani et al.,
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2003; Zhao & Running, 2010) and correlation (Kawabata

et al., 2001; Ichii et al., 2002; Xiao & Moody, 2005) stud-

ies. Apart from climatic drivers, changes may be

induced by anthropogenic processes such as land-use

change, or by a combination of both (Evans & Geerken,

2004). For these reasons, disentangling all contributing

drivers at large spatial scales remains an unsolved issue

(Xiao & Moody, 2005). Typical spatial resolutions rang-

ing from 0.05 to 0.5° complicate the issue as they always

involve mixed pixels, consisting of several vegetation

types and other land-use/land-cover types (Alcantara

et al., 2012; Van Asselen & Verburg, 2012).

Climate observations (temperature, precipitation, cloud-

iness, among others) are available globally as gridded data

sets with monthly intervals since the beginning of the pre-

vious century (Mitchell & Jones, 2005). At the same time,

variations in vegetation activity have been inferred from

satellite imagery at global scale since the early 1980s

(Tucker et al., 2005) using the normalized difference vege-

tation index (NDVI). This index directly correlateswith the

fraction of absorbed photosynthetically active radiation

(fPAR) and can – in combinationwith an efficiency conver-

sion factor and the amount of incident PAR – be used to

quantify gross primary productivity (Running et al., 2004).

Using these data sources, associations between climate

change and changes in vegetation activity can be made for

the last decades (Fensholt et al., 2012). Such associations

are likely to vary with land cover, as each class may

respond differently to climate change and to land-use

change (Chapin et al., 2000; Verburg et al., 2011).

In this study, we modelled the observed changes in

vegetation activity as the additive combination of fixed

(climate-associated) effects, spatially dependent ran-

dom effects and independent residuals. We developed

a land-cover–specific deterministic model and a glob-

ally applicable regression-tree approach to associate

variation in vegetation activity with climate changes.

Covariates for these models were selected under the

assumption that maximum plant growth is affected by

either one or any combination of three climatological

constraints: water availability, temperature and inci-

dent radiation (Field et al., 1995). This assumption was

found to hold for most parts of the terrestrial surface

(Churkina & Running, 1998). Other environmental con-

trol factors are not accounted for in this model. These

may include changes in hydrology (e.g. permafrost

thaw), atmospheric characteristics (e.g. wind, humidity,

biological and chemical constituents), species composi-

tion, degradation of soil (nutrient) resources or land

use and management. The effects of these factors on

vegetation activity were expected to be spatially auto-

correlated (Zhou et al., 2001). Therefore, we tested the

application of a spatially autocorrelated Gausian ran-

dom field (GRF) model for representing the combined

effect of all other drivers not accounted for in the clima-

tology-driven model.

Accordingly, in this work, we hypothesized that a part

of the spatial variation in vegetation-activity trends can be

associated with trends in potential growth-limiting clima-

tologies. This research investigated this hypothesis by

quantifying the role of trends in climatologies on vegeta-

tion activity as well as the associated geographical distri-

bution. Furthermore, realizing that the system of causation

is complex, we aimed at quantifying the combined

response of nonmodelled drivers (including land-use

change), in terms of length scale and strength, as a spatial

field. We demonstrate that the maps associated with this

decomposition reveal spatial patterns that help the inter-

pretation of relationships between vegetation activity,

climate change and human-induced changes.

Materials and methods

Data

NDVI record. The National Oceanographic and Atmospheric

Administration (NOAA) acquired the longest series of data

using advanced very high-resolution radiometer (AVHRR)

sensors. We used the latest release of the global inventory

modelling and mapping studies (GIMMS) NDVIg data set,

which is an extension of earlier versions (Tucker et al., 2005).

The data set consists of 28 years (from 1981 through 2008) of

fortnightly acquisitions at ~8 km (0.072°) spatial resolution.

The fortnightly scenes are maximum value composites of

daily 4 km global area coverage data. This procedure largely

removes atmospheric noise (Holben, 1986), although some

inaccuracy remains, especially in hazy and cloudy conditions

(Nagol et al., 2009). We applied the harmonic analysis of

NDVI time series (HANTS) interpolation algorithm (Roerink

et al., 2000; De Jong et al., 2011) to remove remaining noise in

areas with persistent cloud cover. Areas with very sparse or

no vegetation cover (yearly median NDVI < 0.1) were masked

out, as well as regions at higher than 72° northern latitude. As

such, we excluded the northernmost regions of Russia and

Canada where NDVI signals have been found impacted by

high solar zenith angles and by snow and ice (Brown et al.,

2006). Orbital decay and changes in NOAA satellites are

known to affect AVHRR data, but processed NDVI data have

been found free of trends introduced from these effects

(Kaufmann et al., 2000). Alcaraz-Segura et al. (2010), Baldi

et al. (2008) and Zhou et al. (2001), among others, provided

discussions on the quality of GIMMS and derived trends.

Climate data. The Climatic Research Unit (CRU: University

of East Anglia Climatic Research Unit, 2008) provides high-

resolution gridded data sets with global coverage. The latest

TS 3.1 data sets (Mitchell & Jones, 2005) were released in April

2011 and updated in July 2012 because of a systematic error in

the precipitation data. The data sets provide time series for a

range of climate parameters (Table 1). In the CRU processing

© 2013 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/gcb.12193

2 R. DE JONG et al.



scheme, several station-based data sources were harmonized

to obtain most reliable estimates. For each parameter, refer-

ence climatologies (or: normals) were calculated for the

1961–1990 period and deviations from the normal (or: anoma-

lies) were calculated for all measurements in the record. After

spatial interpolation and superposition on the reference clima-

tologies, these anomalies constitute the final 0.5° grids

(720 9 360 cells). See Mitchell & Jones (2005) for details about

the data sources and processing steps. The data sets cover

1901–2009 and subsets matching the time span of GIMMS

were used here. Nonterrestrial pixels were masked, resulting

in approximately 65 000 grid cells per corresponding GIMMS

time step.

Climatologies were selected under the assumption that plant

growth is limited by water availability, temperature and/or

incident radiation (Field et al., 1995). Changes in either of these

parameters might induce changes in vegetation productivity

and in the proxy NDVI signal. For most regions, water avail-

ability is determined by the amount of precipitation, although

snow melt should be taken into account in high northern lati-

tudes and in mountainous regions. In this study, we confined

this parameter to precipitation as productivity in the men-

tioned regions is temperature limited rather than water limited

(Nemani et al., 2003). Time series of incident PAR are not glob-

ally available, but the amount of PAR is to a large extent deter-

mined by the intensity and duration of cloud overcast

(Zhuravleva et al., 2006). Furthermore, the CRU cloud-cover

data have been augmented with PAR-related sunshine records

to complement sparse cloud observations in recent decades

(Mitchell & Jones, 2005). For these reasons, trends in tempera-

ture (TMP), precipitation and cloud cover (CLD) were selected

as covariates for the deterministic prediction of NDVI trends.

Potential Evapotranspiration (PET) is a reflection of the energy

available to evaporate water given that ample water is avail-

able. It may reflect growth limitation by radiation and was

adopted as additional covariate. PET was calculated as refer-

ence value for grass according to the method used by the

United Nations Food and Agricultural Organization (Ekstr€om

et al., 2007), which is a variant of the Penman-Monteith method

(Allen et al., 1994). The gridded TMP, TMN, TMX, VAP and

CLD (Table 1) were used as input for this calculation. PET

units are mm day�1 and were multiplied by the number of

days in each month to obtain mm month�1.

Land-cover data. In the International Geosphere and

Biosphere Programme (IGBP), a 1 km land-cover product

(DISCover) was developed. The data set consists of 17 general

land-cover types (Loveland & Belward, 1997; Loveland et al.,

2000), based on AVHRR data and a vegetation-classification

logic that is climate independent (Running et al., 1994). The

classification scheme was later adopted within the moderate-

resolution imaging spectrometer (MODIS) land-cover prod-

ucts (Friedl et al., 2002). We used the 2009 MCD12C1.005

product, which provides aggregated land cover at 0.05° reso-
lution, as well as the subpixel frequency of each class. The

product is based on a full year of composited 8 days MODIS

observations (reflectance and land-surface temperature) and

can be considered representative for the state of the land sur-

face around the end of our analysis period. This information

was used to develop land-cover–specific regression models.

Figure 1 provides a conceptual design of the various process-

ing steps that are discussed in the following sections.

Spatial aggregation of NDVI and land-cover data. The

native spatial resolution of the CRU TS 3.1 climate data is 0.5°,
whereas the land-cover data from the MCD12C1 product and

the GIMMS NDVI data have spatial resolutions of 0.05°
(~5.6 km) and 0.073° (~8 km) respectively. Therefore, both the

land-cover data and the temporal NDVI trends needed to be

resampled to 0.5° spatial resolution. In case of the discrete

land-cover data, the spatial aggregation scheme affects the

prevalence of the different classes and the spatial coherence of

each land-cover class within the aggregated product

(Dendoncker et al., 2008; Verburg et al., 2011). For this reason,

careful selection of the aggregation scheme is crucial. A central

pixel approach best preserves the relative area of the individ-

ual classes, especially the minor classes. A majority approach,

on the other hand, provides the best result in terms of spatial

structure of the major classes. In this study, we adopted the

Table 1 Climate parameters from the CRU TS 3.1 data set

(Mitchell & Jones, 2005). Each parameter is represented in a

high-resolution monthly grid with a spatial resolution of 0.5°,
for the time span 1901–2009. PET (monthly mean mm day�1)

was multiplied by the number of days in each month to obtain

mm month�1. PRE was taken from the recent CRU TS 3.10.1

data set

Label Parameter Unit

CLD Cloud cover %

DTR Diurnal temperature range °C
FRS Frost day frequency days

PRE Precipitation mm

TMP Daily mean temperature °C
TMN Daily minimum temperature °C
TMX Daily maximum temperature °C
VAP Vapour pressure hPa

WET Wet day frequency days

PET Potential evapotranspiration mm
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Fig. 1 Conceptual design of the various data sources and pro-

cessing steps.
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majority scheme to assign the prevailing land-cover class

(Fig. 2a) and we used the subpixel frequency (Fig. 2b) to select

relatively homogeneous pixels for fitting the regression mod-

els. The original GIMMS data were used for determination of

temporal trends in NDVI between 1982 and 2008 at 0.073°
(~8 km) spatial resolution. The resulting map of vegetation-

activity changes was aggregated to 0.5° using the areal mean.

All analyses were carried out using R statistical software (R

Development Core Team, 2012) and the geospatial data

abstraction library (GDAL, 2012).

Temporal changes in vegetation activity and climatologies

The total amount of change was determined for both NDVI

and climate time series using linear regression after seasonal

adjustment (De Jong et al., 2011). The seasonality was mod-

elled by using additive harmonic functions with periods of

12, 6 and 3 months respectively. The seasonal component

was subtracted from the original data before fitting the

linear model. The magnitude of change was obtained by

multiplying the slope coefficient of the fitted model by the

length of the time series. As mentioned before, trend analy-

sis was applied before any spatial resampling was per-

formed. The resulting change maps (Fig. 3) were used for

the additive model, which is described in the next section.

Significance of the slope coefficients was assessed using gen-

eralized least squares. In this way, possible short-lag tempo-

ral autocorrelation, which remains after subtracting the

seasonal component, is accounted for in the calculation of

the P-values. All trends at 0.05 confidence level were

0°

0°

(a)

(b)

Sub-pixel frequency (%)

<5
0
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0
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Land-cover classes

Evergreen Needleleaf
Evergreen Broadleaf
Deciduous Needleleaf

Deciduous Broadleaf
Mixed Forest
Closed Shrubland

Open Shrubland
Woody Savanna
Savanna

Grassland
Wetlands
Cropland

Urban
Cropland/Natural
Barren

Fig. 2 (a) Major land-cover classes derived from the 2009 moderate-resolution imaging spectrometer MCD12C1 product and the Inter-

national Geosphere-Biosphere Programme classification scheme (Loveland et al., 2000). The data were resampled to 0.5° spatial resolu-

tion using a majority resampling approach. (b) Subpixel frequency of the major land-cover classes (%).
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retained; other slope coefficients were neglected (and appear

as zero values in Fig. 3).

Based on the climatologies, two regression approaches –

one land-cover specific [multiple linear regression (MLR)] and

one globally applicable [regression tree (RT)] – were used.

Land-cover–specific model for observed NDVI changes

Different land-cover classes (or biomes) are likely to respond

differently to changes in climatic conditions (Chapin et al.,

2000). To assess the relative influence of each of the four clima-

tologies, we used land-cover–specific MLR models. Eqn 1

shows the common structure for each of the 12 models. In this

equation, bn represents regression coefficients and the clima-

tologies vector [Dn] contains changes in the CRU parameters

(Table 1) as covariates. The latter were determined for the

same time span as the NDVI data using seasonal decomposi-

tion and a linear trend model. For the seasonal decomposition,

we estimated the seasonal signal using the HANTS algorithm

(Roerink et al., 2000; De Jong et al., 2011). The model (i.e. b)
was parameterized for each of the 12 land-cover classes sepa-

rately.

DNDVI ¼ b0 þ
DTMP
DPRE
DCLD
DPET

2
664

3
775

T

�½b1 b4�T þ e ð1Þ

At 0.5° spatial resolution, land cover is in most cases a com-

posite of smaller patches, whereas homogeneous pixels are

needed for model calibration. The subpixel frequency (Fig. 2b)

of each class was used to exclude heterogeneous pixels for cali-

brating the regression models described in Eqn 1. The highest

homogeneity threshold (i.e. the fraction of the 0.5° cell covered
by a unique class) was selected such that the individual land-

cover classes retained sufficient pixels for calibration. Above

80%, the number of grid cells in smaller land-cover classes

(deciduous broadleaf forest and closed shrubland) appeared too

limiting for model training and (bootstrapped) significance tests.

At the 80% level, permanent wetlands – the major land-cover

class in 514 grid cells (<1%) –was the only vegetated land-cover

class that could not be incorporated into the model.

Clusters of pixels in large, homogeneous regions (e.g. Siberia,

Amazon and the Great Plains) cause spatial dependency in the

training data. While estimating model coefficients, a bootstrap-

ping method was applied to avoid spatial-autocorrelation

effects. This provides the possibility to calculate confidence

intervals for the regression coefficients and to exclude covari-

ates with an insignificant deviation from zero (a = 0.05). The

maximum number of bootstrap samples was set to 1000 for

each land-cover class.

Global model for observed NDVI changes

An additive model was used for describing the observed tem-

poral changes in NDVI (observations y). The model consists of

a deterministic part where y depends on a set of covariates x

with their coefficients b (fixed effects), a spatial process h and

a residual white noise component e (Eqn 2).

y ¼ xTbþ hþ e ð2Þ
The individual components were estimated using a backfit-

ting approach, consisting of an iterative estimation of the fixed

effects b (regression step) and the spatial field h (kriging step).

The procedure is stepwise described as follows.

0°

0°

(a)   Temperature (TMP) Cloudiness (CLD)

Precipitation (PRE) Potential evapotranspiration (PET)

2

°C
–2

10

%
–10

15

mm
–15

15

mm
–15

(b)

(c) (d)

Fig. 3 Temporal changes (1982–2008) in climatologies: (a) temperature, (b)cloudiness, (c) precipitation (PRE) and (d)potential evapotrans-

piration. Changes were derived at 0.5° spatial resolution using linear models, after seasonal decomposition, from monthly gridded data

[Climatic Research Unit (CRU) time series (TS) 3.1/CRU TS 3.10.1 for PRE] (Mitchell & Jones, 2005).
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(step 1): The initial fixed-effect component xTb was esti-

mated using a RT model.

(step 2): The initial spatial ĥð0Þ field was fitted using the

residuals of step 1 by the method of moments for predic-

tion of the spatial field parameters. This method is

affected by both the random variation and the variation

represented by the fixed effects (Lark et al., 2006); the

backfitting approach in the next step pursues optimal

parameter estimation in this situation of mutual model

dependency.

(step 3): The initial spatial field was subtracted from the

observations and the fixed effects were re-estimated

(step 1). These were, in turn, subtracted from the obser-

vations to predict h (step 2) and this iteration was contin-

ued until convergence. Formally, convergence cannot be

proved (Furrer & Sain, 2009), but empirically it was

found that the parameter estimation stabilized after a

few iterations.

The deterministic model (step 1) and the spatial field (step

2) are described briefly in the following sections and in more

detail in the supporting online material (SMO).

Deterministic model (fixed effects)

The IGBP land-cover classification is climate independent and

each class combines geographically spread regions (e.g. Sibe-

rian tundra and African thickets) in summary classes such as

‘open shrubland’. To deal with these and other interactions, a

flexible RT approach was chosen instead of an application of a

global MLR model. An RT is a sequence of binary splits of the

full data set (independent of land-cover class), each time using

the explanatory variable (i.e. one of the climatologies) that pro-

duces the most homogeneous branches according to a least

squares criterion (see Section S1 for a more elaborate descrip-

tion). The downside of this approach is the limited transpar-

ency of the predictor importance. Several methods can be used

to estimate variable importance, but their robustness is debated

and its measures are not straightforward (Steinberg, 2009). To

profit from both, we followed the approach as described in Sec-

tion 2.4 allowing to get insight in the relative importance of the

explanatory variables (i.e. climatologies) in specific land-cover

regions and the RT approach at global scale.

Spatial field model (random effects)

The regression-tree model is a per-pixel approach, which does

not account for spatial dependence, other than induced by the

explanatory variables. Spatial dependence can be imposed by

modelling h as a stationary GRF. This component quantifies

how much of the variation (beyond climate effects) is spatially

correlated, that is can be explained by yet unknown underly-

ing spatial processes. The GRF is described by a mean func-

tion (here constant zero), a range parameter d that determines

the length scale of the spatial dependency and a sill that deter-

mines the marginal variance. A spherical function was used to

model the reduction in covariance with increasing distance up

to the maximum distance d, beyond which the spatial depen-

dency was forced to zero. The optimal range was found to be

around 900 km and was fixed before optimizing the sill

parameter using maximum likelihood estimation. The esti-

mated parameter set was used to model the spatial field h. The

model is further described in Section S2.

Residual component

An almost pure-nugget variogram (not shown) indicated that

the pixel values in the residual component are spatially uncor-

related. This implies that the combination of fixed and random

effects captured virtually all spatial variance at 0.5° resolution.
As mentioned before, the within-pixel variation due to smaller

scale processes (<0.5°) remains unexplained.

Results and discussion

Model predictions

Land-cover–specific associations. Bootstrapped regression

models provided insight in land-cover–specific associa-
tions between vegetation-activity and growth-limiting

climate parameters. The performance, in terms of coef-

ficient of determination (R2), varied among land-cover

classes (Table 2). There appeared to be a difference

between forest and nonforest areas especially. The

strongest relationships were found in forests, with the

highest R2 in deciduous classes and the lowest R2 in the

(tropical) evergreen broadleaf class. The latter was

anticipated for several reasons: the use of NDVI is dis-

puted in tropical regions (Huete et al., 1997), climato-

logical observations are relatively sparse (Zhao &

Running, 2011) and vegetation growth may not (only)

be limited by the climatologies used (Churkina & Run-

ning, 1998). Outside of forests, the strongest relation-

ship was found for closed shrubland (e.g. parts of the

Sahel region) whereas the weakest relationship was

found for open shrubland. The likely explanation of the

latter is a heterogeneous distribution of this land-cover

class over the globe (Fig. 2a). It includes, among other

regions, the tundra, large parts of the African bush

lands and thickets, central Australia and Argentina,

each of which can be expected to react differently to cli-

mate changes (Chapin et al., 2000, chapter 2). For such

reasons and as discussed before, the regression-tree

approach was adopted for global prediction.

Table 2 suggests that the relationship between cloudi-

ness, which was used as proxy for incident radiation, and

vegetation activity is more conspicuous for nonforest

than for forest classes. A positive relationship between

cloudiness and vegetation activity was found for all clas-

ses but savanna, which suggests that a reduction in inci-

dent radiation yields a positive impact on vegetation

© 2013 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/gcb.12193
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activity in, among others, grasslands and croplands. A

candidate explanation of this might be found in the

higher influence of the diffuse component of incoming

PAR, as compared with the direct component (Spitters

et al., 1986). Clouds were adopted as a proxy for incident

PAR, but they do not act as on/off switch for incident

radiation. Rather, they determine the ratio between direct

and diffuse radiation. For this reason, the efficiency of

photosynthesis under overcast skies may be underesti-

mated (Roderick et al., 2001; Gu et al., 2002). For some

land-cover systems, the combination of higher tempera-

tures and reduced cloudiness may increase the potential

evapotranspiration, but limit vegetation activity, indica-

tions for which could be seen for savannas. These ecosys-

tems are predominantly water limited, rather than

temperature limited (Nemani et al., 2003), for which an

increase in PET may not reflect in higher activity of cano-

pies. The observed cloudiness associations may also be

related to changes in global radiative forcing. A reduc-

tion, or global dimming, has been suggested for the 1960s

until late 1980s, but it was suggested that the trend in-

versed towards global brightening afterwards (Wild et al.,

2005). The latter was found to have raised the diffuse

fraction of solar radiation, which, in turn, may have

boosted photosynthetic efficiency.

Vegetation activity in the (boreal) needleleaf classes

shows associations with temperature – as anticipated

(Nemani et al., 2003) – although the deciduous needle-

leaf forests (Russia) show reduced vegetation activity

despite the warming trend (Fig. 3; Table 2). This case of

boreal browning has been referred to as the divergence

problem and underlying processes remain largely

unknown (D’Arrigo et al., 2008). Suggested causes

include drought stress, pollution, global dimming,

direct temperature stress and, likely, a combination of

these (Goetz et al., 2011). Drought stress would be con-

sistent with field observations in relatively dense forests

(Goetz et al., 2011) and radiation-related causes may be

expected in other cases, although in this study only

found through association with potential evapotranspi-

ration. Radiation–hydrology feedback mechanisms may

further complicate this issue (Oliveira et al., 2011; Girar-

din et al., 2012). Finally, increased biomass burning (Soja

et al., 2004) might have contributed to feedback mecha-

nisms not fully covered within this approach.

Global associations with climatologies. Figure 4 shows the

decomposition of the changes in vegetation activity into

the fields described by the fixed effects (RT), the spatial

process (GRF) and the uncorrelated residuals. The pre-

diction based on the optimal regression-tree model fit

(in terms of lowest cross-validation error) explained

54% of the spatial variation and is shown in the second

panel of Fig. 4.

The general pattern of changes in vegetation activity

is well captured by the fixed-effects model (i.e. by the

changes in climatologies), although the greening pat-

terns seem better represented than some of the brown-

ing patterns (e.g. in subequatorial Africa). A strong

association between greening and precipitation was

found in closed shrublands (Table 2), including parts of

the Sahel. This region is known for its long anoma-

lously dry period since the early 1970s (Nicholson,

2000), probably related to multidecadal oceanic

Table 2 Results of the bootstrapped multiple regression model. For each of the nonmasked land-cover classes following Loveland

et al., (2000), the table lists the coefficient of determination of the fitted model (R2) and the Pearson correlation coefficient between

the change in normalized difference vegetation index and the parameters used in the model. Homogeneous grid cells (subpixel fre-

quency > 80%) were used for model training and climate parameters that did not significantly (a = 0.05) contribute to the model

were not included

Land-cover class R2

Correlation coefficient

TMP PRE CLD PET

Forest Evergreen needleleaf 0.43 0.65 0.25

Evergreen broadleaf 0.22 0.17 �0.16

Deciduous needleleaf 0.54 �0.57 �0.26 �0.32

Deciduous broadleaf 0.68 �0.23 0.79

Mixed 0.25 0.14 �0.14

Nonforest Closed shrubland 0.59 0.67 0.17 0.36

Open shrubland 0.08 0.12 0.25 �0.17

Woody savanna 0.20 0.38 �0.37 0.32

Savanna 0.10 0.16 0.06 �0.12 0.10

Grassland 0.22 0.14 0.30 �0.20

Cropland 0.13 0.07 0.28

Cropland/natural mosaic 0.20 0.30

TMP, temperature; PRE, precipitation; CLD, cloud cover; PET, potential evapotranspiration.
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oscillations (Zhang & Delworth, 2006). The record-low

years were just before the satellite recordings and since

then a positive trend in both precipitation and vegeta-

tion activity was found (Fensholt & Rasmussen, 2011),

which likely underlies the detected association (Hickler

et al., 2005). Nevertheless, associations were found to

vary at regional scales (B�egu�e et al., 2011; Hein et al.,

2011) and remaining greening and browning patches

were therefore found in the GRF component.

Nonassociated spatial patterns. Large-scale browning pat-

terns appeared in the spatially correlated field, which

implies that they could not be directly associated with

climate change. The underlying processes, however,

are likely to act at large spatial scales. Here, we discuss

some conspicuous regions including an effort to iden-

tify candidate drivers from literature.

In Africa, two regions stand out: south/east of Lake

Victoria (mainly Tanzania) and Zimbabwe/southern

Mozambique. In the former, the changes might be

partly related to human activities, as the fixed-effect

model indicated small increases in vegetation activity

rather than decreases. In recent decades, population

increased and agriculture intensified accordingly.

Although small parts of the area are in protected

national parks (e.g. Serengeti), the browning hotspots

are concentrated in unprotected woodland and grass-

land, parts of which were previously marked as

degraded (Pelkey et al., 2000). Wind erosion and over-

grazing have been mentioned as causes for degradation

in these regions (Dregne, 2002).

Severe degradation was also found in Zimbabwe and

attributed to human land use, concentrated in commu-

nal areas (Prince et al., 2009). While relating potential

productivity to actual productivity in this region, Prince

et al. (2009) could establish no relationship between

productivity declines and climatic factors, which is con-

sistent with our results. In South Africa, similar conclu-

sions were drawn based on NDVI analysis with

correction for changes in precipitation (Wessels et al.,

2007). Despite this, it remains contentious to assign

browning patterns to land degradation, partly because

its definition includes perception aspects and because

the NDVI signal needs to vary substantially to capture

the complex interaction of drivers (Wessels et al., 2012).

Browning in Indonesia and other places of south-east

Asia might be related to the expansion of rubber and

palm oil plantations at the cost of tropical forest, a

conversion that has been documented to take place at

scales large enough to be visible as browning in the

analysis (Mann, 2009; Koh et al., 2011). Other conspicu-

ous browning regions include large parts of the needle-

leaf forests in Alaska, Canada and Russia. For these

regions, the complicated relationship with climate and

other abiotic factors was discussed in the previous

section.

The random-effects component also revealed green-

ing patterns that might be associated with land-use pro-

cesses. Very obvious is the large-scale greening in

Eastern Europe and the former Soviet Union. This

greening is documented in the literature as being

related to land abandonment in the postsocialist period,

leading to large-scale regrowth of natural vegetation

(Baumann et al., 2011; Alcantara et al., 2012; Prishche-

pov et al., 2012).

The Sahel region showed patches of spatially

correlated greening and browning. This indicates that –
although the overall greening of the region can be

reasonably associated with climate effects – large

interregional deviations exist. This can be explained by

the complex interactions between land use, grazing and

climate that exist in this region (Seaquist et al., 2008;

B�egu�e et al., 2011; Hein et al., 2011). These complex

interactions cause spatial and temporal deviations in

the greening impact of a wetter climate and therefore

lead to the patchy pattern.

Remainder

The remainder component in Fig. 4d is spatially uncor-

related (variogram not shown). This component may

contain small-scale human interventions, indirect

climate effects – likely hidden in feedback mechanisms

uncaptured at the given spatiotemporal scale – or mea-

surement error (Zhou et al., 2001). It should, however,

be noted that a substantial part of the local variation

caused by small-scale processes was averaged out in the

spatial aggregation procedure. Climatological observa-

tions at higher spatial resolution would be needed to

further disentangle these processes.

Limitations and outlook

The results from the presented model showed plausible

associations between limiting climate variables and

vegetation activity. However, the approach also

contains limitations that may guide future research.

First of all, it is important to stress that correlation, on

which this study relied, does not mean causation. The

presented statistical methods form no physical process

model and there are many processes that cannot be

resolved while being of influence at the spatial scale the

model was applied. For example, the large browning

effect in Northern Argentina (mainly the Chaco region)

was largely attributed to the climatologies (Fig. 4b).

This area, however, is also known for large-scale land

conversion into arable farming (Viglizzo et al., 2011).

As both could be responsible for the browning effect,

© 2013 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/gcb.12193
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Fig. 4 Decomposition of (a) the observed changes in vegetation activity into (b) fixed climatology effects as represented by the regres-

sion-tree model, (c) other spatially correlated, or ‘structured’, effects as represented by the Gaussian random field and (d) residual term

e. The four insets illustrate the spatial structure of each model component at pixel level for the example of southern Africa. For few grid

cells, fixed effects could not be estimated and, as a result, the spatial field was not predicted, due to masking of water bodies and per-

manent wetlands (e.g. Lake Malawi in the insets).
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the causation and correct partitioning of the effects is

difficult to establish (Zak et al., 2008). Sophisticated

modelling of the deterministic component, including

mentioned climate–vegetation feedback mechanisms,

might be achieved with full spatial-temporal models,

but comes with challenges. For example, estimation of

many model parameters, given only NDVI as response

variable, is likely to run into an ill-posed scenario.

Furthermore, dynamic temporal lags between some

climatic predictors and vegetation response need to be

accounted for. The latter is neither simple nor straight-

forward at large spatial and temporal extents (Eklundh,

1998; B�egu�e et al., 2011).

The predictive power of the gridded climate data at

hand is reduced by the spatial interpolation, that is the

effective number of observations is lower than the

number of 0.5° grid cells. This might inflate the weight

of the current GRF component. A denser climate obser-

vation network would increase the predictive power,

especially in remote areas, although great value of the

CRU data set resides in its time span. As regards the

cloudiness data, the observations have been augmented

with sunshine records (Mitchell & Jones, 2005) and few

observations are available outside of Europe, North

America and Asia. Both may bias the prediction and

render radiation the component where improvement is

most needed.

Conclusions

In this study we hypothesized that a part of the spatial

variation in vegetation-activity changes can be attrib-

uted to changes in potential growth-limiting climatolo-

gies (i.e. temperature, precipitation and radiation

proxies) and that the remainder shows spatial patterns,

which can be used to quantify the combined influence of

other actors, including human effects. By modelling the

deterministic climate effects and the nonassociated spa-

tial process, we found the following:

1. At global scale, the deterministic relationship with

climatologies explained about 54% of the spatial

variation in vegetation-activity trends. In

geographical sense, it especially accounted for large

parts of the global greening trends and for the

browning hotspots in Argentina and Australia.

2. The spatially correlated field, which combines actors

other than climatologies, explained the majority of

the remaining variation, leaving a minimal share in

the residual component. For some sub-Saharan

regions, including Tanzania and Zimbabwe, brown-

ing hotspots were detected within this component.

In these regions, negative changes in vegetation

activity may need to be explained by human activi-

ties. Other hotspots could be related to well-docu-

mented large-scale land conversions.

3. Land-cover–specific regression models demonstrated

strongest relationships between climate change and

vegetation-activity trends in forests, conspicuously in

needleleaf forest. Here, negative relationships with

temperature showed reduced vegetation activity

under warming conditions: an effect, which is known

as the divergence problem in boreal forests. Strong

positive relationships between precipitation and veg-

etation activity were found in closed shrublands.
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