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Abstract. Grasslands across the United States play a key role in regional livelihood and
national food security. Yet, it is still unclear how this important resource will respond to the
prolonged warm droughts and more intense rainfall events predicted with climate change. The
early 21st-century drought in the southwestern United States resulted in hydroclimatic
conditions that are similar to those expected with future climate change. We investigated the
impact of the early 21st-century drought on aboveground net primary production (ANPP) of
six desert and plains grasslands dominated by C4 (warm season) grasses in terms of significant
deviations between observed and expected ANPP. In desert grasslands, drought-induced grass
mortality led to shifts in the functional response to annual total precipitation (PT), and in
some cases, new species assemblages occurred that included invasive species. In contrast, the
ANPP in plains grasslands exhibited a strong linear function of the current-year PT and the
previous-year ANPP, despite prolonged warm drought. We used these results to disentangle
the impacts of interannual total precipitation, intra-annual precipitation patterns, and
grassland abundance on ANPP, and thus generalize the functional response of C4 grasslands
to predicted climate change. This will allow managers to plan for predictable shifts in
resources associated with climate change related to fire risk, loss of forage, and ecosystem
services.

Key words: climate change; desert; extreme events; grassland production; invasive species; plains;
precipitation variability; resilience; warm drought.

INTRODUCTION

General circulation models predict that climate

change will result in an unprecedented concurrence of

regional drying and warming (e.g., Seager et al. 2007).

Further, droughts induced by climate change are

predicted to be spatially expansive and temporally

synchronous (Weiss et al. 2009). These droughts are

also predicted to include novel precipitation patterns

characterized by more intense rainfall events and longer

dry interstorm intervals (Easterling et al. 2000, Solomon

et al. 2007), potentially inducing dramatic region-wide

changes in ecosystem productivity. In the western

United States, recent episodes of drought-induced

perennial plant mortality in forests (Allen et al. 2010),

woodlands (Breshears et al. 2005), shrublands (McAu-

liffe and Hamerlynck 2010), and grasslands (Scott et al.

2010) have been attributed to warmer prevailing

temperatures that exacerbated drought conditions. Such

mortality and potential subsequent development of

novel species assemblages (Williams and Jackson 2007,

Willis and Bhagwat 2009) could have significant

implications for the relationship between annual precip-

itation and ecosystem productivity.

North American grassland ecosystems are expected to

be sensitive to global climate change because they have

the capacity for large and rapid responses of production

to annual precipitation (Sala et al. 2000, Knapp and

Smith 2001, Suttle et al. 2007, Reichmann et al. 2013).

However, there is uncertainty how grassland production

will respond to new hydroclimatic conditions because

there is still no consensus on the underlying mechanisms

driving these responses even though individual grassland

sites have been studied for long-term responses, and

these sites have been compared for relative sensitivities

(Epstein et al. 2002, Morgan et al. 2011). As a result,

there are few generalizations about the regional behav-
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ior of grasslands with prolonged warm drought and

more extreme precipitation events (Peters et al. 2004).

Studies of grassland productivity in arid and semiarid

ecosystems are generally based on the response of

aboveground net primary production (ANPP or total

new biomass produced aboveground during a specific

interval) to variability in total annual precipitation (PT).

There is a well-accepted relation in North America

between mean annual precipitation (MAP, the long-

term average of PT) and ANPP across sites from arid to

mesic ecosystems, termed the spatial model (Sala et al.

1988b, Knapp and Smith 2001, Huxman et al. 2004),

and there is some understanding about how this spatial

model will respond to climate change (Sala et al. 2012,

Ponce-Campos et al. 2013). However, the cross-site

spatial model differs substantially from the within-site

temporal model (e.g., Huxman et al. 2004, Sala et al.

2012), and there is no consensus on the biogeochemical,

physiological, or community-level mechanisms that may

explain this disparity (Lauenroth and Sala 1992,

Muldavin et al. 2008). Understanding this distinction

is important because it is the temporal model that will be

used to manage grassland resources and to plan for

shifts in functional processes associated with climate

change.

Although there is general agreement that the temporal

model is contingent upon the life history of organisms,

geography, and limitations of nutrients, light, and water,

there is little consensus on the underlying mechanisms

driving the regional patterns because most temporal

models have been developed for individual sites. Knapp

and Smith (2001) reported a temporal model for

grasslands where the pulses in ANPP in years of

above-average precipitation were larger than declines

in ANPP during years with below-average precipitation.

They attributed this asymmetry to buffering mechanisms

that reduced the impact of drought. Using largely the

same data set, Huxman et al. (2004) reported that

temporal models for single sites followed a pattern

where rainfall use efficiency (RUE is ANPP/PT)

increased from high- to low-production biomes because

resources other than soil water became limiting in the

high-production biomes. With a data set limited to those

low-production–high-RUE sites (subhumid grass and

shrub-dominated rangelands), Sala et al. (2012) reported

that the temporal model was best characterized by the

current-year precipitation and the previous-year ANPP

because of time lags in response associated with

meristem density at the plant scale and grass abundance

at the plot scale. Their results suggest that in such

rangeland systems, the response of ANPP to long-term

drought would increase with time as the lag-effect

continued, ultimately leading to functional and struc-

tural changes as hypothesized by Smith et al. (2009).

Ponce-Campos et al. (2013) suggested that with pro-

longed warm drought, grassland biomes would reach a

maximum RUE, approaching a threshold which, when

crossed, would result in biome reorganization. The

concurrence of larger storms and longer dry intervals

has been reported to decrease ANPP in intermountain
desert grasslands (Zhang et al. 2013) and may increase

ANPP in Great Plains grasslands (Heisler-White et al.
2009, Cherwin and Knapp 2012).

This ecological complexity has made regional gener-
alizations of temporal models of the ANPP-to-PT

relation difficult. Our objective was to develop a
temporal model of the relation between ANPP and PT

for arid and mesic regions of the C4 grasslands of the

southwestern United States. Deviations between ob-
served and expected ANPP were used to determine

changes in function related to the long-term ANPP-to-
PT relation.

We focused on grasslands of the United States for
several reasons. First, a basic goal of ours was to provide

a climate change context to the temporal model. Recent
hydroclimatic conditions in the United States provided

an opportunity to study the functional response of
biomes dominated by C4 grasses to warm drought and

extreme precipitation patterns. In the southwest United
States, the early 21st-century drought has resulted in

regional annual precipitation 25% below 20th-century
means and an average annual temperature 0.88C warmer

than the 20th-century mean; these conditions are similar
to those expected with climate change (MacDonald

2010). Second, the continental United States is charac-
terized by two distinct regions supporting extensive

grasslands: the Great Plains and the intermountain
desert (hereafter referred to as plains and desert
grasslands). This allowed us to investigate the impact

of life history on the temporal model related to climate
and grazing pressures. Third, our research was inten-

tionally designed to utilize in situ knowledge to
understand the mechanics behind site-specific behavior.

Within this region, there are six USDA experimental
sites with continuous research and data collection over

the past 20–100 years. We combined these case studies
to understand the mechanisms underlying deviations

from predicted ANPP-to-PT relations and make regional
generalizations that could apply to similar grasslands

around the world.

MATERIALS, METHODS, AND MODELS

Study sites

We focused on six USDA long-term experimental
sites during the period from 2000 to 2011 (Fig. 1). These

study sites encompass a range of precipitation and
temperature regimes and are dominated by C4 grasses

(Table 1). Locations include three arid intermountain
desert grasslands (mean annual precipitation [MAP]

,350 mm/yr), Desert Experimental Range (DER) in
Utah, Jornada Experimental Range (JRN) in New

Mexico, and Walnut Gulch Experimental Watershed
(WGE) in Arizona; and three mesic Great Plains

grasslands (MAP � 350 mm/yr), Central Plains Exper-
imental Range (CPL) in Colorado and Southern Plains

Experimental Range (SPL) and Little Washita River
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Experimental Watershed (LWA) in Oklahoma. Site-

level experts were available at each experimental site to

interpret and validate results based on long-term

records.

These grassland ecosystems in the continental United

States need to be set in context of the historical

evolution across North America that has resulted in

regional structure and function. North American

grasslands occur in transitional climate regions where

prolonged dry periods favor perennial grass persistence;

thus most plants are tolerant of short-term drought, but

the frequency of species with tolerance to severe, long-

FIG. 1. Locations of the six grassland sites across the southwest United States, overlain on an image of regional Palmer drought
severity index (PDSI) over the NOAA/NCDC polygons for year 2003 during the early 21st-century drought (from http://www7.
ncdc.noaa.gov/CDO/cdo). CPL is Central Plains Experimental Range, DER is Desert Experimental Range, SPL is Southern Plains
Experimental Range, LWA is Little Washita River Experimental Watershed, JRN is Jornada Experimental Range, and WGE is
Walnut Gulch Experimental Watershed.

TABLE 1. Characteristics of the six grassland sites, including the dominant grasses at the beginning of the decade (year 2000),
mean annual sum of precipitation (MAP), and mean annual maximum temperature (MAT) with standard deviations in
parentheses.

Site name and location Dominant grasses in year 2000 MAP (mm) MAT(8C)

Intermountain desert grasslands

DER, Desert Experimental Range, Utah C4: Sporobolus cryptandrus 179 (58) 20 (0.8)
C3: Oryzopsis hymenoides

JRN, Jornada Experimental Range, New Mexico C4: Bouteloua eriopoda;
Sporobolus flexuosa

241 (73) 25 (0.8)

WGE, Walnut Gulch Experimental Watershed,
Arizona

C4: Bouteloua eriopoda; Bouteloua
curtipendula

305 (91) 25 (0.9)

Great Plains grasslands

CPL, Central Plains Experimental Range, Colorado C4: Bouteloua gracilis 381 (91) 16 (1.5)
C3: Hesperostipa comata

SPL, Southern Plains Experimental Range,
Oklahoma

C4: Bouteloua curtipendula 587 (165) 22 (0.9)
Andropogon hallii

LWA, Little Washita River Experimental
Watershed, Oklahoma

C4: Schizachyrium scoparium 794 (197) 24 (1.0)
Andropogon gerardii

Note: Averages represent the 32-year period 1980–2011 for all sites except DER (18-year period 1994–2011). All sites are in the
United States.
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term drought increases as MAP decreases (McPherson

1997, McCarron and Knapp 2001, Peltzer and Köchy

2001, Briggs et al. 2005). Plains grasslands are domi-

nated by sod-forming bunchgrasses capable of tolerating

prehistoric and historic grazing pressure, especially by

large ungulates (Collins et al. 1998, Lyman and

Wolverton 2002). This region encompasses mesic

tallgrass prairie, mixed-grass prairie, and semiarid

shortgrass steppe and follows a declining east–west

precipitation gradient with similar seasonal rainfall

distribution peaking in the summer when temperatures

are warmest (Borchert 1950). In contrast, desert

grasslands are characterized by widely spaced,

drought-tolerant bunchgrasses, and the region did not

historically support high densities of large ungulate

populations (McClaran 1997, Lyman and Wolverton

2002). These arid grasslands experience lower, more

variable interannual rainfall, with distinct summer and

winter peaks that reflect the relative strengths of North

American monsoon and frontal systems influenced by El

Niño Southern Oscillation (ENSO) and Northern

Annular Mode dynamics (Sheppard et al. 2002, McAfee

and Russell 2008).

Meteorological data

Long-term in situ meteorological measurements were

used to derive climatic variables to characterize the

hydroclimatic conditions. The PT was computed as a

sum of daily precipitation based on the water year (1

October–30 September). The Palmer drought severity

index (PDSI) was computed from measurements of

monthly precipitation and temperature from 1960 to

2011, where negative and positive values indicated dry

and wet conditions, respectively (Dai 2011). For the

DER site in Utah, the record of continuous in situ

meteorological measurements was only available from

1994 to present, and consequently, PDSI was computed

using extended records at nearby NOAA stations.

National networks with instrumentation near the

study sites provided additional information. The NOAA

National Climate Data Center (NCDC) provided

regional annual PDSI values from 1900 to present based

on measurements that included monthly precipitation

and average air temperature and estimates of local soil

available water content. These data were used to

compare the 1930s dust bowl drought, the 1950s

drought that affected much of the southwest and

southern Great Plains of the United Staes, and the

contemporary early 21st-century drought.

We defined a hydroclimatic index based on PDSI to be

used as a predictor of ecosystem functional response to

drought based on findings that the number of consec-

utive months of drought extending over multiyear

periods was a good predictor of plant mortality

(McAuliffe and Hamerlynck 2010). Since monthly PDSI

was computed based on conditions during the prior 12

months, we considered the PDSI in September (PDSISep)

to be an indicator of the consecutive months of drought

weighted more heavily on the growing season of that

water year. The distribution of PDSISep during the late

20th century (1980–1999) was used to determine the

values associated with an extreme wet year (in top fifth

percentile), a wet year (in top 20th percentile), a warm

drought year (in bottom 20th percentile), and an extreme

drought year (in bottom fifth percentile). That is, the

bottom fifth percentile translates to the driest year in the

20-year record (1980–1999), and similarly, the bottom

20th percentile translates roughly to the fourth driest

year.

To characterize the seasonal precipitation pattern, we

used an R95 index that was proposed by Frich et al.

(2002) and has been adopted as a standard output in the

Intergovernmental Panel on Climate Change (IPCC)

AR2 (second assessment report; Solomon et al. 2007).

R95 is the annual precipitation amount due to daily

precipitation exceeding the 95th percentile of the full

temporal record (1970–2011). To make this value

comparable across sites along a precipitation gradient,

we normalized R95 by PT to derive R95%. The index

R95% is the fraction of PT due to the events above the

95th percentile and provides a standardized annual

index of the frequency of large storms.

Aboveground net primary production (ANPP)

Many studies of cross-site ecosystem production are

based on a compilation of in situ measurements of

ANPP from long-term experimental sites across the

United States and around the world. This approach can

lead to some uncertainty because procedures are not

consistent across sites, and in some cases, not consistent

over time at a given site (Sala et al. 1988a, Biondini et al.

1991). Further, the general approach for estimating

ANPP for grasslands is to schedule the destructive

sample for dates associated with peak biomass.

Instead, we used satellite observations of the en-

hanced vegetation index (EVI) from NASA’s moderate-

resolution imaging spectroradiometer (MODIS) as a

surrogate for annual ANPP. At each location, a site of

;33 3 km was chosen where vegetation was dominated

by C4 grasses and in situ meteorological records

representative of the location could be obtained.

MODIS EVI data were extracted for this location,

where

EVI ¼ G
qNIR � qred

qNIR þ C1qred � C2qblue þ L
ð1Þ

and qNIR, qred, and qblue are atmospherically corrected

surface near-infrared, red, and blue reflectance bands,

respectively; G is a gain factor; C1 and C2 are the

coefficients of the aerosol resistance term; and L

functions as the soil-adjustment factor (Huete et al.

2002). Values of EVI were averaged over an area of 2.25

3 2.25 km (9 3 9 MODIS pixels) extracted from each

MODIS scene (23 per year 3 10 years ¼ 230 scenes)

representing the dominant vegetation type at the site.

Using the software TimeSat (Jönsson and Eklundh
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2004), we applied pixel-based quality control to remove

noise from the time series and smoothed the time series

to integrate the EVI over the active growing season (A in

Fig. 2a; hereafter referred to as the integrated EVI or

iEVI).

The MODIS iEVI has been used to quantify the

dynamics of ANPP across biomes ranging from arid

grassland to forest (Ponce-Campos et al. 2013, Zhang et

al. 2013). For this study, plot-scale measurements of

ANPP at JRN and CPL sites during the 2000–2011

study period (Morgan et al. 2011, Peters et al. 2012)

were compared with iEVI measurements. Though there

are scale differences between measurements of iEVI and

ANPP (i.e., ANPP measurements are commonly made

at scales from 1 m2 to 0.01 km2 vs. iEVI at ;23 2 km),

ground-based measures of ANPP were significantly

related to iEVI for these select grasslands over the time

period 2000–2011 in a log-log relation (r2 ¼ 0.71 and

0.91, P , 0.01; Fig. 2b). The log-log relation accounted

for the uneven distribution of ANPP estimates over

time.

A simple test was conducted to compare in situ ANPP

estimates made near the peak of the growing season to

iEVI values integrated over the entire growing season.

At CPL, it is the protocol to make ANPP destructive

samples in the first week of August. We integrated the

EVI from the beginning of the growing season to the

first week in August (rather than the full water year) to

be comparable to the time of the CPL estimate. The log-

log relation improved from r2 ¼ 0.71 (Fig. 2b) to r2 ¼
0.82 with this synchronization of time periods. This

result implies that the iEVI may provide more temporal

stability, and less uncertainty, than in situ estimates of

annual ANPP associated with destructive samples

scheduled to coincide with the elusive date of peak

greenness. Thus, we assumed that the iEVI was a

reasonable surrogate for ANPP interannual variability

at all six sites in our analyses, and the terms iEVI and

ANPP are used interchangeably in further discussion.

Standardized values of PT and iEVI were computed

for intersite comparison (PTS and iEVIS), as the

deviation of the i-year value from the 11-year average

in units of standard deviation (r), i.e.,

PTS ¼ ðPTi � PTÞ=rPT

and

iEVIS ¼ ðiEVIi � iEVIÞ=riEVI: ð2Þ

Differences greater than 1r between iEVIS and PTS

for any given year indicated an anomaly in the

functional response of the grassland production to

precipitation and a potential indication of impact of

the warm drought conditions in the early 21st century.

Temporal model

Most of the previous studies have focused on the

spatial model of ANPP and PT for MAP ranging from

;100 to ;3000 mm/yr. This is summarized here and

interpreted for application to a temporal model for

grasslands. There is general agreement that the spatial

model of ANPP and PT is exponential, with a form

ANPP ¼ b0(1 � eb1PT ) (Huxman et al. 2004, Ponce-

Campos et al. 2013). Zhang et al. (2013) proposed a

multiple nonlinear regression model to account for the

significant effects of extreme precipitation patterns,

where iEVI ¼ (b0 þ b1R95%)(1 � eb2PT ). They found

that R95% and PT together explained 88% of the

variance in observed ANPP across biomes from desert

grassland to temperate forest. The temporal model for

grassland sites with MAP ,1000 mm has been

approximated with a linear fit, where ANPP ¼ b0 þ
b1PT (e.g., Briggs and Knapp 1995). For arid to

FIG. 2. NASA’s MODIS enhanced vegetation index (EVI). (a) An example of the time series of integrated EVI (iEVI) for
Central Plains Experimental Range (CPL), where (A) the iEVI is the integral of the difference between the function describing the
season and (D) the base level from (B) season start to (C) season end. (b) The log-log relation (black lines) between the iEVI and
aboveground net primary production (ANPP) measured in situ at Jornada Experimental Range (JRN; 2000–2008) and CPL (2000–
2009), respectively.
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subhumid grass- or shrub-dominant systems (i.e.,

rangelands), Sala et al. (2012) suggested that ANPP

was best characterized by the current-year precipitation

(PT(t), where t is the current year) and the previous-year

ANPP (ANPP(t�1)), where ANPP ¼ b0 þ b1PT(t) þ
b2ANPP(t�1). Though no correlation coefficient was

provided for this unified model, the logic that previous-

year ANPP controls a significant fraction of current-

year production was discussed in Introduction.

An equivalent set of relations specific to this study of

six grassland sites was derived by (1) substituting the

linear temporal ANPP-to-PT relation in place of the

exponential spatial relation and (2) using iEVIS as a

proxy for ANPP. As a result

iEVIS ¼ b0 þ b1PTSðtÞ ð3Þ

from Briggs and Knapp (1995);

iEVIS ¼ b0 þ b1PTSðtÞ þ b2iEVISðt�1Þ ð4Þ

from Sala et al. (2012); and

iEVIS ¼ b0 þ b1PTSðtÞ þ b2R95% ð5Þ

from Zhang et al. (2013).

Combining these relations, it is reasonable to propose

that

iEVIS ¼ b0 þ b1PTSðtÞ þ b2iEVISðt�1Þb3R95%: ð6Þ

We fit models for all possible combinations of

predictors (Eqs. 3–6) to data for the three combined

desert grassland sites and to data for the three combined

plains grassland sites. This provided the expected

response of iEVIS to model parameters for detection of

significant deviations between observed and expected

ANPP. We assessed models based on Akaike’s informa-

tion criterion adjusted for small sample sizes (AICc) to

evaluate the benefit of increasing model complexity from

Eq. 3 to Eq. 6 (Burnham and Anderson 2002). We

selected models of greater complexity than Eq. 3 when

the inclusion of an additional model parameter reduced

AIC by more than 2.0 (Burnham and Anderson 2002).

We also report regression correlation coefficients (r2) as

an absolute measure of model fit. We note that intercepts

for all models were close to zero such that including

intercepts did not produce more parsimonious models

(DAIC ,2 for models with vs. without intercepts in all

cases); hence, intercepts were not included in the models.

RESULTS

Characteristics of the early 21st-century drought

During the early 21st century, these six grasslands

experienced prolonged drought with warm season

temperatures higher than any period in the 20th century,

representing new hydroclimatic conditions (Fig. 3). Low

precipitation during the early 21st-century drought was

comparable to that during the 1930s dust bowl drought.

However, temperature deviations from the historic mean

during the early 21st-century drought were nearly

double those reported for the 1930s drought, rising

from 0.28 to 0.88C during the cold season and from 0.68

to 1.18C during the warm season. The decrease in

precipitation in the 1950s drought was greater than the

decrease in the 1930s and early 21st-century droughts,

but the temperature during the warm season was only

0.68C above the historic mean.

During the early 21st-century drought, the three

desert grasslands (DER, JRN, and WGE) and two of

the three plains grasslands (CPL and LWA) recorded

warm drought periods ranging from five to eight years,

and all sites recorded two or more consecutive warm

drought years (Fig. 4). All sites recorded at least one

extreme warm drought year, and CPL recorded six

consecutive extreme warm drought years, where extreme

warm drought years were within the bottom fifth

percentile and thus drier than the driest year between

1980–1999. For all sites, there were only three years (i.e.,

2006–2008 at JRN) when PDSISep fell within the top

20th percentile and one year when PDSISep fell within

the top fifth percentile of the 1980–1999 distribution

(i.e., 2011 at DER). Warm season temperatures during

the most extreme drought years exceeded the 12-year

(2000–2011) average by values ranging from 0.48 to

1.78C for the desert grasslands and 1.38 to 2.58C for the

plains grasslands.

The R95% was used as an index of the number of large

storms in each year standardized to the long-term average

for each site, respectively. We used the Hartigan’s dip

statistic (HDS) to detect the presence of bimodality in the

data, and this yielded the mean and standard deviation of

each distribution (Fig. 5). There was a shift in the peaks

of this mixed-density function toward larger storms

(higher R95%) in the 2001–2011 time period, determined

with one-way analysis of variance. The mean of the

leftmost distribution shifted from 8.6 to 13.1 for the

periods 1970–1999 and 2001–2011, respectively; and

similarly, the mean of the rightmost distribution shifted

from 26.3 to 29.1 (P , 0.05).

A temporal model for C4 grasslands during altered

hydroclimatic conditions

For desert grasslands, the model based on PTS(t) alone

(AIC ¼ 67.1) explained 60% of the variance in iEVIs.

More complex models that included iEVIS(t�1) and

R95% (AIC ¼ 73.1) or R95% alone (AIC ¼ 74.8) were

considerably less parsimonious (DAIC ¼ 7.3 and 9.0;

Table 2). A model that included iEVIS(t�1) plus PTS(t)

reduced AIC by 1.3 relative to the PTS(t) model. Because

the small increase in AIC (DAIC ,2) came at the cost of

an additional model parameter, we rejected this model

and retained the simplest model that predicted iEVIS
only on the basis of PTS(t) (Table 2), where

iEVISðDesertÞ ¼ 0:7772
�

PTSðtÞ

�
: ð7Þ

For plains grasslands, the model based on PTS(t) alone

(AIC¼ 50.0) explained 75% of the variance in iEVIS. A
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model including both PTS(t) and iEVIS(t�1) was more

parsimonious (DAIC ¼�3.7) and explained 79% of the

variance in iEVIS. The selected model was

iEVISðPlainsÞ ¼ 0:8811
�

PTSðtÞ

�
� 0:1522

�
iEVISðt�1Þ

�
:

ð8Þ

Models including R95% were considerably less

parsimonious (DAIC .8.6). The intra-annual precipita-

tion pattern (larger storms and longer interstorm dry

periods) had only a secondary impact on ANPP and that

impact was greater for desert than for plains grasslands

(Table 2; and Zhang et al. 2013). To achieve model

parsimony, that is, the desire to explain phenomena

using fewer parameters, models including R95% were

not considered for these grasslands despite potential

improvements in explaining iEVIS variance.

Functional response of U.S. grasslands to the early 21st-

century drought

The residuals of the selected models (Eqs.7 and 8)

were symmetric across the precipitation gradient (Fig.

6); however, the most striking pattern in the residuals is

related to the outliers. After three to four near-

consecutive years of warm drought, residuals for desert

grasslands (DER, JRN, and WGE) were greater than

1r or less than �1r. Whereas, the iEVIS for plains

grasslands (CPL, SPL, and LWA) corresponded well

with modeled values for most years (within 61r) and

did not exhibit the dramatic anomalies observed for

desert grasslands. Thus, the root mean squared error

(RMSE) of the difference between measured and

modeled iEVIS was lower for plains grasslands than

for desert grasslands (0.46 and 0.6, respectively).

Of the three outliers in the iEVIS/PTS relationship for

desert grasslands, two were associated with plant

mortality during prolonged drought, and one involved

a lag in the response of ANPP to PT associated with

changes in species dominance (Fig. 7; Table 3). After

three near-consecutive years of warm drought (2002–

2003 and 2005), the native grasses at WGE experienced

near 100% mortality (Scott et al. 2010). In 2006, WGE

was dominated by opportunistic forbs with ANPP

greater than expected if produced by native grasses

(iEVIS .1r). This was concurrent with the spread of

the exotic South African grass Eragrostis lehmanniana

(Lehmann lovegrass), which then attained dominance

by 2007. This near 100% mortality of native grasses

and replacement with forbs and invasive perennial

grass was associated with extreme warm drought (Fig.

FIG. 3. Palmer drought severity index (PDSI), total precipitation (PT), and temperature (T ). (a) Annual PDSI (solid line) and
(b and c) total seasonal precipitation (lower black solid line) and mean seasonal temperature (upper gray solid line) for the cold
season (October to March) and warm season (April to September) averaged over the NOAA National Climate Data Center
polygons (Fig. 1) containing the six grassland sites for years 1900–2010 (data from http://www7.ncdc.noaa.gov/CDO/cdo). Dashed
lines represent (a) PDSI¼ 0 and (b and c) the 1900–2010 mean temperatures. During the three drought periods (boxed), (a) the M
values represent the mean PDSI and (b and c) the DT and DPT values represent the increase in temperature and decrease in
precipitation (respectively) from the 1900–2010 mean.
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7c). Similarly, the unexpectedly high iEVIS relative to

PTS at DER in 2010 was associated with an increase in

the introduced annual weed Salsola sp. (Russian

thistle) documented during ANPP measurements

(Fig. 7a). After two consecutive years of extreme warm

drought at JRN (2002–2003), ANPP decreased in 2004

by 70% of the predrought mean despite greater than

average precipitation (Peters et al. 2012), followed by

an increase in the production of annuals (2005 and

2006) and an increase in the production of the

dominant native grasses by 2008. A similar lag in the

response of ANPP to PT was observed at DER in the

postdrought years 2005–2006 after five consecutive

years of warm drought (Fig. 7a and 7b). No lags nor

new species assemblages were observed in plains

grasslands over the study period (Table 3). Though

CPL and LWA sites experienced similarly prolonged

warm drought, the ANPP remained primarily respon-

sive to PT (Fig. 7d and 7f ) and secondarily to previous

year ANPP (Eq. 8).

FIG. 4. PDSI in September (PDSISep) computed from meteorological measurements at (or near) each site. Lines represent
thresholds related to the top and bottom 20th percentiles (dashed lines) and top and bottom fifth percentiles (solid lines) of the
PDSISep distribution during the late 20th century (1980–1999). Location site abbreviations are defined in Fig. 1.
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DISCUSSION

Results illustrated the regional variation and complex

functional response of grassland production to extreme

conditions that are analogous to predicted climate

change and the importance of multisite experiments

for making generalizations. After only a few years of

warm drought, desert grasslands entered a long recovery

period that shifted the expected ANPP response to PT

for several years, and in some cases, resulted in changed

community composition. Though grasses in these arid

regions are well adapted to persist through typical

seasonal dry periods and episodic, chronic drought

(McClaran 1997), this series of warm drought years

disrupted the typical productivity response to PT. Plains

grasslands exposed to prolonged warm drought re-

sponded strongly to both wet and drought conditions

(Fig. 6b), a dynamic that confirms the linear temporal

model. This led to linear models (Eqs. 7 and 8) across all

sites and years that improved the prediction of ANPP,

with anomalies attributed to changes in dominant

species and lags in the response of ANPP to PT in

desert grasslands (Fig. 7; Table 3).

This was a first attempt to model the response of

ANPP to the interdependent factors of current-year

precipitation, intra-annual rainfall distribution, and

previous-year ANPP in a natural setting. We confirmed

that ANPP responded primarily to current-year precip-

itation in both desert and plains grasslands, and to

previous-year ANPP only in the mesic plains grassland.

When all factors covaried, the impact of larger storms

on grassland ANPP was minimized, in contrast to

studies that reported a significant impact of larger

storms and longer dry periods on grassland ANPP when

precipitation amount was held constant in a manipulat-

ed experiment (e.g., Heisler-White et al. 2009) or when

effects of precipitation patterns were isolated from

effects of PT (e.g., Zhang et al. 2013). Interestingly, the

influence of previous-year ANPP in mesic plains

grasslands did not lead to the type of anomalous

ANPP-to-PT relationship that might be expected with

chronic drought (Smith et al. 2009). Instead, the

anomalous behavior associated with lags, mortality,

and new species assemblages was limited to prolonged

droughts in the arid desert grasslands, where previous-

FIG. 5. Frequency distribution of R95% for two times periods, 1979–1999 and 2001–2011, overlain with the respective density
functions based on a mixture of two normal distributions with differing means and variances, illustrating the shift in the peaks of
this mixed-density function toward larger storms (higher R95%) in the 2001–2011 time period. R95 is the annual precipitation
amount due to daily precipitation exceeding the 95th percentile of the full temporal record (1970–2011). To make this value
comparable across sites along a precipitation gradient, we normalized R95 by PT to derive R95%. The index R95% is the fraction of
PT due to the events above the 95th percentile and provides a standardized annual index of the frequency of large storms.

TABLE 2. Comparison of models predicting current-year
ANPP (integrated standardized enhanced vegetation index,
iEVIS) as a function of standardized current-year t precip-
itation (PTS(t)), standardized previous-year ANPP
(iEVIS(t�1)), and/or an index of large precipitation events
(R95%).

Model AIC DAIC r2

Desert grasslands

PTS(t) 64.5 1.1 0.60
PTS(t), iEVIS(t�1) 63.4 0.0 0.56
PTS(t), R95% 73.5 10.1 0.61
PTS(t), iEVIS(t�1), R95% 72 8.6 0.57

Plains grasslands

PTS(t) 50.0 3.7 0.75
PTS(t), iEVIS(t�1) 46.3 0.0 0.79
PTS(t), R95% 58.9 12.6 0.75
PTS(t), iEVIS(t�1), R95% 55.6 9.3 0.83

Notes: Selected models are shown in boldface. AIC is
Akaike’s information criterion. Where DAIC values for two
competing models differed by less than 2, we selected the model
with the fewest parameters. R95 is the annual precipitation
amount due to daily precipitation exceeding the 95th percentile
of the full temporal record (1970–2011). To make this value
comparable across sites along a precipitation gradient, we
normalized R95 by PT to derive R95%. The index R95% is the
fraction of PT due to the events above the 95th percentile and
provides a standardized annual index of the frequency of large
storms.
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FIG. 6. Relation between measured and modeled standardized integrated enhanced vegetation index (iEVIS) based on Eqs. 7
and 8 for desert (DER, JRN, and WGE; mean annual precipitation [MAP] ,350 mm/yr) and plains (CPL, SPL, and LWA; MAP
�350 mm/yr) grasslands, respectively. Sites and years for which the difference between measured and modeled iEVIS exceeded 61r
(61 SD) are labeled. RMSE is the root mean squared error of the difference between measured and modeled iEVIS and
standardized total precipitation, PTS. Location site abbreviations are defined in Fig. 1.

FIG. 7. Trends in standardized iEVI and PT (iEVIS and PTS, respectively) for each grassland site. Black lines represent iEVIS ,
PTS (ANPP is lower than expected for the given precipitation, see anomalous negative residuals in Fig. 6), and gray lines represent
iEVIS . PTS (ANPP is higher than expected for the given precipitation, see anomalous positive residuals in Fig. 6). The thicker
lines indicate a larger deviation (in units of standard deviation). The years with PDSISep below the 20th percentile of the 1980–1999
distribution (from Fig. 4) are represented by dark gray vertical bars. Arrows point to years of documented lag in the response of
ANPP to PT (Lag) and new species assemblages (NSA; from Table 3).
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year ANPP was not included in the ANPP model. This

may be explained by exceptions to the response

trajectory associated with ecosystems that are near

thresholds of change (Peters et al. 2004, Smith et al.

2009). Continuing drought in plains grasslands could

eventually lead to altered ecosystem functioning similar

to that reported here for desert grasslands. This is

supported by findings that the persistence of water

deficit largely determines the sensitivity of biomes to

drought and that there are different adaptation mech-

anisms in arid and mesic biomes (Vicente-Serrano et al.

2013). Vicente-Serrano et al. (2013) emphasized the role

of temperature in the response of vegetation to climate

variability by correlating the standardized precipitation

evapotranspiration index (SPEI) with vegetation activity

and growth.

Together, the findings of Ponce-Campos et al. (2013)

and Zhang et al. (2013) and our findings (Fig. 7) suggest

that there was shift in the functional response of desert

grasslands to PT. In contrast, the plains grasslands are

following a predictable trajectory of ecosystem response

to chronic drought that is expected to result in altered

ecosystem functioning at the scale of months to decades

(Smith et al. 2009). This difference in response between

plains and desert grassland may be related to the

adaptive responses of their dominant grass species to

water availability. Plains grasslands historically and

currently support large grazing populations (Briggs et al.

2005). The dominant grass assemblages of the plains

grasslands maintain aboveground–belowground ratios

which can impart greater capacity to physiologically

adjust to climate variability, as well as facilitate

community shifts, supporting greater regenerative ca-

pacity following disturbance (Knapp and Smith 2001,

Zhou et al. 2009). Convergent selection pressure exerted

by the combination of grazing and aridity in the plains

grasslands may also be important in selecting for traits

that impart substantial resistance to both disturbances

(Milchunas et al. 1988, Quiroga et al. 2010). Desert

grasslands, in contrast, did not coevolve with consistent

grazing pressure and evolved the ability to rapidly

respond to and effectively use highly variable and

extremely pulsed precipitation (Bock et al. 1984,

McClaran 1997). Once grass biomass is lost, grasslands

can take years to recover (Peters et al. 2012), as

evidenced by the lags observed for desert grasslands

(Fig. 7). Such lags in grass productivity are a

contributing factor to historical expansion of woody

species into desert grassland systems (McClaran 2003,

McClaran et al. 2010), as well as contributing to altered

community structure at DER and WGE that affected

ANPP precipitation responses (Fig. 6). Collectively,

these observations suggest that North American grass-

lands will undergo predictable, but regionally distinct,

responses to the prolonged warm, dry conditions which

are characteristic of climate change.

Results reported here for the early 21st century may

be temporary, and the long-term impact on ecosystem

functional integrity across the North American grass-

land biome is yet unknown. Interannual trends in plant

phenology should provide a better understanding of the

reported differences between arid and mesic sites, and

the ecohydrological feedbacks leading to grassland

mortality (Pennington and Collins 2007, Notaro et al.

2010). Also, the site-level mechanisms associated with

disease and pests have not been a factor at these sites,

but will likely further influence ecosystem function

(Rosenzweig et al. 2001). Rising atmospheric CO2 may

partially counter the effects of prolonged warm drought

by increasing plant biomass (Morgan et al. 2011,

Donohue et al. 2013). These variant outcomes could

be attributed to the contrast between short-term

experiments and studies lasting longer than a decade

related to biochemical changes (Baldocchi 2011). With a

longer postdrought time period, it may be possible to

investigate the potential for, and dynamics of, grassland

recovery and rehabilitation (e.g., Peters et al. 2012).

TABLE 3. Case studies at long-term experimental sites explaining the mechanisms driving the site-by-site, year-by-year relation
between standardized iEVI and standardized total precipitation PT (iEVIS and PTS), where the number of consecutive months
with PDSI , 0 and number of consecutive years with PDSI in September (PDSISep) , 20th percentile express the prolonged
warm drought.

Site Ecosystem
PDSI ,0

(consecutive months)

PDSISep
,20th percentile
(consecutive years)

Observed
functional response In situ knowledge

DER desert 62 5 Lag, 2005 S. G. Kitchen, field notes
DER desert 97 of 124 8 of 10 NSA, 2010 S. G. Kitchen, field notes
JRN desert 56 of 66 4 of 5 Lag, 2004–2006 Peters et al. (2012)
WGE desert 78 of 97 3 of 4 NSA, 2006–present Scott et al. (2010)
CPL plains 106 of 108 7 responsive to PTS Evans et al. (2011)
SPL plains no prolonged drought 0 responsive to PTS S. A. Gunter, personal

communication
LWA plains 99 of 101 5 responsive to PTS P. J. Starks, personal

communication

Notes: The functional responses include the lag in the response of ANPP to PT (Lag) and new species assemblages (NSA). The in
situ knowledge used to understand the mechanics of site behavior include field notes, recent publications, and personal
communications. Sites listed as responsive to PTS are those for which no outliers exceeded 61r (61 SD; see Fig. 6). See Table 1 for
site names.
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Providing a prediction of the functional response of

grasslands to altered hydroclimatic conditions and an

operational means to monitor it has important implica-

tions. First, our work illustrates the value of experimen-

tal sites with long-term, species-scale observations of

grassland dynamics combined with continuing satellite-

based observations such as EVI in future studies and

modeling efforts because in our case the species-specific

information aided interpretation of the ANPP–PT

anomalies. Second, our results show that regional

management of grassland resources related to fire risk,

loss of forage, and ecosystem services can be designed to

account for predictable shifts in functional processes

associated with climate change. These compelling results

in a natural setting at the regional scale should play a

role in future grassland research, management,

and policy.
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