Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
26 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
Person Washington, Dawn
Located in Expertise Search
Person Curran, Joanna
Located in Expertise Search
File Land Use and Energy Development in the Appalachian LCC
A brief discussion of primary land uses in the AppLCC.
Located in Resources / / AppLCC Development and Operations Planning / Conservation Challenges in the Appalachian LCC
File PDF document Biophysical controls on organic carbon fluxes in fluvial networks.pdf
Metabolism of terrestrial organic carbon in freshwater ecosystems is responsible for a large amount of carbon dioxide outgassing to the atmosphere, in contradiction to the conventional wisdom that terrestrial organic carbon is recalcitrant and contributes little to the support of aquatic metabolism. Here, we combine recent findings from geophysics, microbial ecology and organic geochemistry to show geophysical opportunity and microbial capacity to enhance the net heterotrophy in streams, rivers and estuaries. We identify hydrological storage and retention zones that extend the residence time of organic carbon during downstream transport as geophysical opportunities for microorganisms to develop as attached biofilms or suspended aggregates, and to metabolize organic carbon for energy and growth. We consider fluvial networks as meta-ecosystems to include the acclimation of microbial communities in downstream ecosystems that enable them to exploit energy that escapes from upstream ecosystems, thereby increasing the overall energy utilization at the network level.
Located in Resources / Climate Science Documents
File PDF document Carbon in idle croplands
The collapse of the Soviet Union had diverse consequences, not least the abandonment of crop cultivation in many areas. One result has been the vast accumulation of soil organic carbon in the areas affected.
Located in Resources / Climate Science Documents
File PDF document A large source of low-volatility secondary organic aerosol
Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol 1,2, which is known to affect the Earth’s radiation balance by scattering solar radiation and by acting as cloud condensation nuclei 3. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incom- plete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non- volatile organic vapours4–6, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene a-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the for- mation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aero- sol, helping to explain the discrepancy between the observed atmo- spheric burden of secondary organic aerosol and that reported by many model studies2. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere–aerosol– climate feedback mechanisms 6–8, and the air quality and climate effects of biogenic emissions generally.
Located in Resources / Climate Science Documents
File ECMAScript program Ecosystem carbon stocks and sequestration potential of federal lands across the conterminous United States
Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration rate (in kilograms of carbon per hectare per year) from 2006 to 2050 would be sinks of 620 and 228 for forests and grasslands, respectively, and C sources of 13 for shrublands. The federal lands’ contribution to the national ecosystem C budget could decrease from 23.3% in 2005 to 20.8% in 2050. The C sequestration potential in the future depends not only on the footprint of individual ecosystems but also on each federal agency’s land use and management. The results presented here update our current knowledge about the baseline ecosystem C stock and sequestration potential of federal lands, which would be useful for federal agencies to decide management practices to achieve the national greenhouse gas (GHG) mitigation goal.
Located in Resources / Climate Science Documents
File D source code Human domination of the biosphere: Rapid discharge of the earth-space battery foretells the future of humankind
Earth is a chemical battery where, over evolutionary time with a trickle-charge of photosynthesis using solar energy, billions of tons of living biomass were stored in forests and other ecosystems and in vast reserves of fossil fuels. In just the last few hundred years, humans extracted exploitable energy from these living and fossilized biomass fuels to build the modern industrial-technological-informational economy, to grow our population to more than 7 billion, and to transform the biogeochemical cycles and biodiversity of the earth. This rapid discharge of the earth’s store of organic energy fuels the human domination of the biosphere, including conversion of natural habitats to agricultural fields and the resulting loss of native species, emission of carbon dioxide and the resulting climate and sea level change, and use of supplemental nuclear, hydro, wind, and solar energy sources. The laws of thermodynamics governing the trickle-charge and rapid discharge of the earth’s battery are universal and absolute; the earth is only temporarily poised a quantifiable distance from the thermodynamic equilibrium of outer space. Although this distance from equilibrium is comprised of all energy types, most critical for humans is the store of living biomass. With the rapid depletion of this chemical energy, the earth is shifting back toward the inhospitable equilibrium of outer space with fundamental ramifications for the biosphere and humanity. Because there is no substitute or replacement energy for living biomass, the remaining distance from equilibrium that will be required to support human life is unknown.
Located in Resources / Climate Science Documents
File Formation of soil organic matter via biochemical and physical pathways of litter mass loss
Soil organic matter is the largest terrestrial carbon pool (1). The pool size depends on the balance between formation of soil organic matter from decomposition of plant litter and its mineralization to inorganic carbon. Knowledge of soil organic matter formation remains limited (2) and current C numerical models assume that stable soil organic matter is formed primarily from recalcitrant plant litter (3) . However, labile components of plant litter could also form mineral-stabilized soil organic matter (4). Here we followed the decomposition of isotopically labelled above-ground litter and its incorporation into soil organic matter over three years in a grassland in Kansas, USA, and used laboratory incubations to determine the decay rates and pool structure of litter-derived organic matter. Early in decomposition, soil organic matter formed when non-structural compounds were lost from litter. Soil organic matter also formed at the end of decomposition, when both non-structural and structural compounds were lost at similar rates. We conclude that two pathways yield soil organic matter efficiently. A dissolved organic matter–microbial path occurs early in decomposition when litter loses mostly non-structural compounds, which are incorporated into microbial biomass at high rates, resulting in efficient soil organic matter formation. An equally efficient physical-transfer path occurs when litter fragments move into soil.
Located in Resources / Climate Science Documents
File The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate
Plant biodiversity is often correlated with ecosystem functioning in terrestrial ecosystems. However, we know little about the relative and combined effects of above- and belowground biodiversity on multiple ecosystem functions (for example, ecosystem multifunctionality, EMF) or how climate might mediate those relationships. Here we tease apart the effects of biotic and abiotic factors, both above- and belowground, on EMF on the Tibetan Plateau, China. We found that a suite of biotic and abiotic variables account for up to 86% of the variation in EMF, with the combined effects of above- and belowground biodiversity accounting for 45% of the variation in EMF. Our results have two important implications: first, including belowground biodiversity in models can improve the ability to explain and predict EMF. Second, regional-scale variation in climate, and perhaps climate change, can determine, or at least modify, the effects of biodiversity on EMF in natural ecosystems.
Located in Resources / Climate Science Documents